Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

A Tunable Dual-Passband Microwave Photonic Filter Based on Optically Injected Distributed Feedback Semiconductor Lasers and Dual-Output Mach-Zehnder Modulator

Jiayi Zhao    
Jingjing Hu    
Pengcheng Deng    
Runze Yu    
Ruoxian Liu    
Mingshan Zhao and Yiying Gu    

Resumen

In this paper, a novel approach to achieving a wideband tunable dual-passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach?Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification effect and the period-one oscillation state under optically injected DFB lasers. These effects provide a widely tunable range of center frequency, along with high flexibility and low insertion loss. The proposed MPF is experimentally demonstrated, showing that the dual-passband center frequency in the MPF can be tuned independently from 19 to 37 GHz by adjusting the detuning frequency and injection ratio. Meanwhile, the insertion loss of the system is about 15 dB when there is no optical or electrical amplifier in the MPF link. The out-of-band suppression ratio of the MPF is more than 20 dB, which can be improved by adjusting the power of the two optical signals.