Resumen
Post-disaster flood risk assessment is extremely difficult owing to the great uncertainties involved in all parts of the assessment exercise, e.g., the uncertainty of hydrologic?hydraulic models and depth?damage curves. In the present study, a robust and fast data-driven tool for residential flood risk assessment is introduced. The proposed tool can be used by scientists, practitioners and/or stakeholders as a first step for better understanding and quantifying flood risk in monetary terms. Another contribution of the present study is the fitting of an equation through depth?damage points provided by the Joint Research Center (JRC). The approach is based on hydrologic simulations for different return periods, employing a free and widely used software, HEC-HMS. Moreover, flood depths for the study area are estimated based on hydrodynamic simulations employing the HEC-RAS software and the Inverse Distance Weighting (IDW) interpolation method. Finally, flood risk, in monetary terms, is determined based on the flood depths derived by the coupling of hydrodynamic simulations and the IDW method, depth?damage curves reported in the literature, vulnerability of residential areas and the residential exposure derived by employing GIS tools. The proposed tool is applied in a highly urbanized and flood-prone area, Mandra city, in the Attica region of Greece. The results are maps of flood depths and flood risk maps for specific return periods. Overall, the results derived from the application of the proposed approach reveal that the tool can be highly effective for post-disaster flood risk management. However, it must be noted that additional information and post-disaster data are needed for the verification of the damages from floods. Additional information can result in better calibration, validation and overall performance of the proposed flood risk assessment tool.