Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

A Generalized Model of Complex Allometry I: Formal Setup, Identification Procedures and Applications to Non-Destructive Estimation of Plant Biomass Units

Héctor Echavarria-Heras    
Cecilia Leal-Ramirez    
Enrique Villa-Diharce and Juan Ramón Castro-Rodríguez    

Resumen

(1) Background: We previously demonstrated that customary regression protocols for curvature in geometrical space all derive from a generalized model of complex allometry combining scaling parameters expressing as continuous functions of covariate. Results highlighted the relevance of addressing suitable complexity in enhancing the accuracy of allometric surrogates of plant biomass units. Nevertheless, examination was circumscribed to particular characterizations of the generalized model. Here we address the general identification problem. (2) Methods: We first suggest a log-scales protocol composing a mixture of linear models weighted by exponential powers. Alternatively, adopting an operating regime-based modeling slant we offer mixture regression or Takagi?Sugeno?Kang arrangements. This last approach allows polyphasic identification in direct scales. A derived index measures the extent on what complexity in arithmetic space drives curvature in arithmetical space. (3) Results: Fits on real and simulated data produced proxies of outstanding reproducibility strength indistinctly of data scales. (4) Conclusions: Presented analytical constructs are expected to grant efficient allometric projection of plant biomass units and also for the general settings of allometric examination. A traditional perspective deems log-transformation and allometry inseparable. Recent views assert that this leads to biased results. The present examination suggests this controversy can be resolved by addressing adequately the complexity of geometrical space protocols.

 Artículos similares

       
 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water

 
Luis Adán Félix-Salazar, Emigdio Marín-Enríquez, Eugenio Alberto Aragón-Noriega and Jorge Saul Ramirez-Perez    
During the last 50 years, the increase in the efforts of the longline fleet in the Eastern Pacific Ocean (EPO) resulted in an increase in the capture of the swordfish Xiphias gladius. We analyzed a historical database of swordfish catches (1980?2020) rep... ver más

 
Luzhidan Fu, Yaan Hu and Zhonghua Li    
Due to the small cross-section coefficient of a shiplift chamber, the hydraulics problem becomes a complex water flow problem in ship operation. To prevent the ship from touching the bottom and ensure the safety of ship navigation and the docking of the ... ver más

 
Xin Tian and Yuan Meng    
The judicious configuration of predicates is a crucial but often overlooked aspect in the field of knowledge graphs. While previous research has primarily focused on the precision of triples in assessing knowledge graph quality, the rationality of predic... ver más
Revista: Algorithms

 
Tianlong Li, Tao Zhang and Wenhua Li    
This paper presents a two-step approach for optimizing the configuration of a mobile photovoltaic-diesel-storage microgrid system. Initially, we developed a planning configuration model to ensure a balance between the mobility of components and a sustain... ver más
Revista: Applied Sciences