Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 12 Par: 10 (2021)  /  Artículo
ARTÍCULO
TITULO

Relativistic Effects on Satellite?Ground Two?Way Precise Time Synchronization

Yanming Guo    
Yan Bai    
Shuaihe Gao    
Zhibing Pan    
Zibin Han    
Decai Zou    
Xiaochun Lu and Shougang Zhang    

Resumen

An ultrahigh precise clock (space optical clock) will be installed onboard a low-orbit spacecraft (a usual expression for a low-orbit satellite operating on an orbit at an altitude of less than 1000 km) in the future, which will be expected to obtain better time-frequency performance in a microgravity environment, and provide the possible realization of ultrahigh precise long-range time synchronization. The advancement of the microwave two-way time synchronization method can offer an effective solution for developing time-frequency transfer technology. In this study, we focus on a method of precise satellite-ground two-way time synchronization and present their key aspects. For reducing the relativistic effects on two-way precise time synchronization, we propose a high-precision correction method. We show the results of tests using simulated data with fully realistic effects such as atmospheric delays, orbit errors, and earth gravity, and demonstrate the satisfactory performance of the methods. The accuracy of the relativistic error correction method is investigated in terms of the spacecraft attitude error, phase center calibration error (the residual error after calibrating phase center offset), and precise orbit determination (POD) error. The results show that the phase center calibration error and POD error contribute greatly to the residual of relativistic correction, at approximately 0.1~0.3 ps, and time synchronization accuracy better than 0.6 ps can be achieved with our proposed methods. In conclusion, the relativistic error correction method is effective, and the satellite-ground two-way precise time synchronization method yields more accurate results. The results of Beidou two-way time synchronization system can only achieve sub-ns accuracy, while the final accuracy obtained by the methods in this paper can improved to ps-level.

 Artículos similares

       
 
Jui-Fa Chen, Yu-Ting Liao and Po-Chun Wang    
Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable fluctuations in river water levels. This environment necessitates the development of real-time, automated systems for water level detection. Due to degradation, tra... ver más
Revista: Water

 
Artur Chudzik and Andrzej W. Przybyszewski    
Neurodegenerative diseases (NDs), including Parkinson?s and Alzheimer?s disease, pose a significant challenge to global health, and early detection tools are crucial for effective intervention. The adaptation of online screening forms and machine learnin... ver más
Revista: Applied Sciences

 
Kamal Rsetam, Yusai Zheng, Zhenwei Cao and Zhihong Man    
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection ... ver más

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Antonio Chiariello, Gaetano Perillo, Mauro Linari, Raffaele Russo, Salvatore Orlando, Pasquale Vitale and Marika Belardo    
This study addresses the crucial role of post-buckling behavior analysis in the structural design of composite aeronautical structures. Traditional engineering practices tend to result in oversized composite components, increasing structural weight. EASA... ver más
Revista: Aerospace