Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 14 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Particle Swarm Optimization-Based Control for Maximum Power Point Tracking Implemented in a Real Time Photovoltaic System

Asier del Rio    
Oscar Barambones    
Jokin Uralde    
Eneko Artetxe and Isidro Calvo    

Resumen

Photovoltaic panels present an economical and environmentally friendly renewable energy solution, with advantages such as emission-free operation, low maintenance, and noiseless performance. However, their nonlinear power-voltage curves necessitate efficient operation at the Maximum Power Point (MPP). Various techniques, including Hill Climb algorithms, are commonly employed in the industry due to their simplicity and ease of implementation. Nonetheless, intelligent approaches like Particle Swarm Optimization (PSO) offer enhanced accuracy in tracking efficiency with reduced oscillations. The PSO algorithm, inspired by collective intelligence and animal swarm behavior, stands out as a promising solution due to its efficiency and ease of integration, relying only on standard current and voltage sensors commonly found in these systems, not like most intelligent techniques, which require additional modeling or sensoring, significantly increasing the cost of the installation. The primary contribution of this study lies in the implementation and validation of an advanced control system based on the PSO algorithm for real-time Maximum Power Point Tracking (MPPT) in a commercial photovoltaic system to assess its viability by testing it against the industry-standard controller, Perturbation and Observation (P&O), to highlight its advantages and limitations. Through rigorous experiments and comparisons with other methods, the proposed PSO-based control system?s performance and feasibility have been thoroughly evaluated. A sensitivity analysis of the algorithm?s search dynamics parameters has been conducted to identify the most effective combination for optimal real-time tracking. Notably, experimental comparisons with the P&O algorithm have revealed the PSO algorithm?s remarkable ability to significantly reduce settling time up to threefold under similar conditions, resulting in a substantial decrease in energy losses during transient states from 31.96% with P&O to 9.72% with PSO.

 Artículos similares

       
 
Shoffan Saifullah and Rafal Drezewski    
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc... ver más
Revista: Applied Sciences

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Zhi Quan, Hailong Zhang, Jiyu Luo and Haijun Sun    
Signal modulation recognition is often reliant on clustering algorithms. The fuzzy c-means (FCM) algorithm, which is commonly used for such tasks, often converges to local optima. This presents a challenge, particularly in low-signal-to-noise-ratio (SNR)... ver más
Revista: Information

 
Miniyenkosi Ngcukayitobi, Lagouge Kwanda Tartibu and Flávio Bannwart    
Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into th... ver más
Revista: AI

 
Jili Kong and Zhen Wang    
With the gradual emergence of customized manufacturing, intelligent manufacturing systems have experienced widespread adoption, leading to a surge in research interests in the associated problem of intelligent scheduling. In this paper, we study the flex... ver más
Revista: Applied Sciences