Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal carburation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200766

Keywords:

spark-ignition engine, operating process, internal carburation, fuel-air mixture

Abstract

An operating process for engines with spark ignition and direct fuel injection engines which ensures the formation of a stratified lean fuel-air charge under the modes of partial loads and the power composition of the fuel-air mixture at high loads has been developed.

The design of a two-stroke spark-ignition engine was modernized by installing a direct fuel injection system, placing the nozzle in the cylinder wall, and changing the combustion chamber shape.

A procedure of adjustment of the composition of the fuel-air mixture in the cylinder of a two-stroke spark-ignition engine has been developed. The procedure features the recording of engine parameters and indicators at a constant cycle fuel feed and intake air adjustment. The proposed procedure makes it possible to more accurately adjust the composition of the fuel-air mixture due to a more accurate dosage of air than the cycle fuel feed.

Experimental studies were carried out and adjustment characteristics were constructed in terms of the air-fuel mixture composition in the cylinder of a two-stroke engine with a developed operating process.

Load characteristics (at n=3,000 rpm) of rational adjustment in terms of economy and maximum power were constructed based on data on the adjustment characteristics for the composition of the fuel-air mixture.

It was found that in terms of the load characteristic of rational economy adjustment, the composition of the fuel-air mixture in the engine cylinder (λcyl.ec) varied from 1.31 to 1.94 and the minimum fuel consumption was ge min=259 g/(kWh). In terms of the load characteristic of rational power adjustment, the composition of the fuel-air mixture in the engine cylinder (λcyl.pow) varied from 1.31 to 1.7, and the fuel consumption at partial loads was ge=270 g/kWh.

Characteristics of airflow rate depending on the cycle fuel feed can be used to change the composition of the fuel-air mixture with automatic adjustment of the engine load

Author Biographies

Volodymyr Korohodskyi, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate Professor

Department of Internal Combustion Engines

Sviatoslav Kryshtopa, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Аutomobile Transport

Vasiliy Migal, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskyh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Tractors and Cars

Andrii Rogovyi, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate Professor

Department of Theoretical Mechanics and Hydraulics

Andrii Polivyanchuk, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Urban Environmental Engineering

Georgiy Slyn’ko, Zaporizhzhia Polytechnic National University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Doctor of Technical Sciences, Professor

Department of Internal Combustion Engines

Volodymyr Manoylo, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskyh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Tractors and Cars

Oleh Vasylenko, Ukrainian State University of Railway Transport Feuerbacha sq., 7, Kharkiv Ukraine, 61050

PhD, Senior Lecturer

Department of Heat Engineering, Heat Engines and Energy Management

Oleksandr Osetrov, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Internal Combustion Engines

References

  1. International Energy Outlook 2019 with projections to 2050. U.S. (2019). Energy Information Administration. Available at: https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf
  2. Panchuk, M., Kryshtopa, S., Panchuk, A., Kryshtopa, L., Dolishnii, B., Mandryk, I., Sladkowski, A. (2019). Perspectives for developing and using the torrefaction technology in Ukraine. International Journal of Energy for a Clean Environment, 20 (2), 113–134. doi: https://doi.org/10.1615/interjenercleanenv.2019026643
  3. World Energy Outlook 2019 (2019). International Energy Agency, 810.
  4. Panchuk, M., Kryshtopa, S., Shlapak, L., Kryshtopa, L., Panchuk, A., Yarovyi, V., Sładkowski, A. (2018). Main trends of biofuels production in Ukraine. Transport Problems, 12 (4), 15–26. doi: https://doi.org/10.20858/tp.2017.12.4.2
  5. Kryshtopa, S., Kryshtopa, L., Melnyk, V., Dolishnii, B., Prunko, I., Demianchuk, Y. (2017). Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems, 12 (2), 53–63. doi: https://doi.org/10.20858/tp.2017.12.2.6
  6. Liu, W. (2017). Energy Management Strategies for Hybrid Electric Vehicles. Hybrid Electric Vehicle System Modeling and Control, 243–287. doi: https://doi.org/10.1002/9781119278924.ch6
  7. Polivyanchuk, A., Ahieiev, M., Kagramanian, A., Baranovskis, A., Samarin, O. (2020). Features of Environmental Diagnostics of Heat Motors and Boiler Plants by Information Methods. Lecture Notes in Intelligent Transportation and Infrastructure, 360–367. doi: https://doi.org/10.1007/978-3-030-39688-6_45
  8. Kryshtopa, S., Panchuk, M., Kozak, F., Dolishnii, B., Mykytii, I., Skalatska, O. (2018). Fuel economy raising of alternative fuel converted diesel engines. Eastern-European Journal of Enterprise Technologies, 4 (8 (94)), 6–13. doi: https://doi.org/10.15587/1729-4061.2018.139358
  9. Dumenko, P., Kravchenko, S., Prokhorenko, A., Talanin, D. (2019). Formation and Study of Static and Dynamic Characteristics of Electronically Controlled Diesel Engine. Latvian Journal of Physics and Technical Sciences, 56 (2), 12–23. doi: https://doi.org/10.2478/lpts-2019-0009
  10. Prohorenko, A., Dumenko, P. (2018). Software Algorithm Synthesis for Diesel Electronic Control Unit. Latvian Journal of Physics and Technical Sciences, 55 (3), 16–26. doi: https://doi.org/10.2478/lpts-2018-0017
  11. Nüesch, T., Elbert, P., Flankl, M., Onder, C., Guzzella, L. (2014). Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs. Energies, 7 (2), 834–856. doi: https://doi.org/10.3390/en7020834
  12. Polivyanchuk, A., Gritsuk, I., Skuridina, E. (2019). Improving the accuracy of the gravimetric method for control particulate matter in diesel exhaust. New Stages of Development of Modern Science in Ukraine and EU Countries. doi: https://doi.org/10.30525/978-9934-588-15-0-59
  13. Kryshtopa, S., Melnyk, V., Dolishnii, B., Korohodskyi, V., Prunko, I., Kryshtopa, L. et. al. (2019). Improvement of the model of forecasting heavy metals of exhaust gases of motor vehicles in the soil. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 44–51. doi: https://doi.org/10.15587/1729-4061.2019.175892
  14. Arena, F., Mezzana, L. (2014). The Automotive CO2 Emissions Challenge. 2020 Regulatory Scenario for Passenger Cars. Arthur D. Little. Available at: https://www.adlittle.com/sites/default/files/viewpoints/ADL_AMG_2014_Automotive_CO2_Emissions_Challenge.pdf
  15. Meyer, S., Kölmel, A., Gegg, T., Trattner, A., Grassberger, H., Schögl, O. et. al. (2015). Advantages and challenges of lean operation of two-stroke engines for hand-held power tools. 15. Internationales Stuttgarter Symposium, 247–261. doi: https://doi.org/10.1007/978-3-658-08844-6_17
  16. Kryshtopa, S., Panchuk, M., Dolishnii, B., Kryshtopa, L., Hnyp, M., Skalatska, O. (2018). Research into emissions of nitrogen oxides when converting the diesel engines to alternative fuels. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.124045
  17. Marouf Wani, M., Mursaleen, M., Parvez, S. (2013). Investigations on a Two Stroke Cycle Spark Ignition Engine Using Gasoline Direct Injection. Energy and Power, 2 (7), 116–122. doi: https://doi.org/10.5923/j.ep.20120207.01
  18. Mattarelli, E., Rinaldini, C. A. (2015). Two-Stroke Gasoline Engines for Small-Medium Passenger Cars. SAE Technical Paper Series. doi: https://doi.org/10.4271/2015-01-1284
  19. Zhang, Y., Zhao, H. (2014). Optimisation of boosting strategy for controlled auto-ignition combustion in a four-valve camless gasoline direct injection engine running in two-stroke cycle. International Journal of Engine Research, 15 (7), 850–861. doi: https://doi.org/10.1177/1468087413519991
  20. Wang, X., Ma, J., Zhao, H. (2017). Analysis of scavenge port designs and exhaust valve profiles on the in-cylinder flow and scavenging performance in a two-stroke boosted uniflow scavenged direct injection gasoline engine. International Journal of Engine Research, 19 (5), 509–527. doi: https://doi.org/10.1177/1468087417724977
  21. Zhang, G., Xu, M., Zhang, Y., Hung, D. L. S. (2012). Characteristics of Flash Boiling Fuel Sprays from Three Types of Injector for Spark Ignition Direct Injection (SIDI) Engines. Proceedings of the FISITA 2012 World Automotive Congress, 443–454. doi: https://doi.org/10.1007/978-3-642-33841-0_33
  22. Zhang, Y., Zhao, H., Ojapah, M., Cairns, A. (2013). CAI combustion of gasoline and its mixture with ethanol in a 2-stroke poppet valve DI gasoline engine. Fuel, 109, 661–668. doi: https://doi.org/10.1016/j.fuel.2013.03.002
  23. Wang, X., Zhao, H., Xie, H. (2016). Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine. Applied Energy, 165, 801–814. doi: https://doi.org/10.1016/j.apenergy.2015.12.116
  24. Mahmoudzadeh Andwari, A., Pesyridis, A., Esfahanian, V., Said, M. (2019). Combustion and Emission Enhancement of a Spark Ignition Two-Stroke Cycle Engine Utilizing Internal and External Exhaust Gas Recirculation Approach at Low-Load Operation. Energies, 12 (4), 609. doi: https://doi.org/10.3390/en12040609
  25. Andwari, A. M., Abdul Aziz, A., Muhamad Said, M. F., Esfahanian, V. et. al. (2017). Effect of internal and external EGR on cyclic variability and emissions of a spark ignition two-stroke cycle gasoline engine. Journal of mechanical engineering and sciences, 11 (4), 3004–3014. doi: https://doi.org/10.15282/jmes.11.4.2017.4.0270
  26. Gombosuren, N., Yoshifumi, O., Hiroyuki, A. (2020). A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine. Energies, 13 (2), 303. doi: https://doi.org/10.3390/en13020303
  27. Wang, X., Zhao, H. (2019). A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation. Engineering, 5 (3), 535–547. doi: https://doi.org/10.1016/j.eng.2019.03.008
  28. Schnittger, W., Königstein, A., Pritze, S., Pöpperl, M., Rothenberger, P., Samstag, M. (2003). 2.2 Direct Ecotec. MTZ Worldwide, 64 (12), 2–7. doi: https://doi.org/10.1007/bf03227635
  29. Voss, E., Schmittger, W., Königstein, A., Scholten, I., Pöpperl, M., Pritze, St., Rothenberger, P., Samstag, M. (2003). 2,2 l ECOTEC DIRECT – Der neue Vollaluminiummotor mit Benzindirekteinspritzung für den Opel Signum. 24. Internationales Wiener Motorensymposium.
  30. Krebs, R., Böhme, J., Dornhöfer, R., Wurms, R., Friedmann, K., Helbig, J., Hatz, W. (2004). Der neue Audi 2,0T FSI Motor Der erste direkteinspritzende Turbo Ottomotor bei Audi. 25. Wiener Motorensymposium. Available at: https://www.tib.eu/en/search/id/dkf%3A0409DKF189515/Der-neue-Audi-2-0T-FSI-Motor-Der-erste-direkteinspritzende/
  31. Jägerbauer, E., Fröhlich, K., Fischer, H. (2003). Der neue 6,0-l-Zwölfzylindermotor von BMW. MTZ - Motortechnische Zeitschrift, 64 (7-8), 546–555. doi: https://doi.org/10.1007/bf03227108
  32. Tsuji, N., Sugiyama, M., Abe, S. (2006). Der neue 3.5L V6 Benzinmotor mit dem innovativen stöchiometrischen Direkteinspritzsystem D-4S. 27. Internationales Wiener Motorensymposium.
  33. Kettner, M., Fischer, J., Nauwerck, A., Spicher, U., Velji, A., Kuhnert, D., Latsch, R. (2003). Ein neues Brennverfahren mit Mehrfacheinspritzung für Ottomotoren mit Direkteinspritzung. 9. Tagung: Der Arbeitsprozess des Verbrennungsmotors. Available at: http://www.sfb606.kit.edu/index.pl/Haupt_Menu_Forschungsprogramm_M08/projekte/c3/Veroeffentlichung/Sept2003_BPi.pdf
  34. Kettner, M., Fischer, J., Nauwerck, A., Tribulowski, J., Spicher, U., Velji, A. et. al. (2004). The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines. SAE Technical Paper Series. doi: https://doi.org/10.4271/2004-01-0035
  35. Herden, W., Vogel, M. (2002). Visionen idealer strahlgeführter BDE-Brennverfahren. Dieselund Benzindirekteinspritzung. Essen: Expert-Verlag.
  36. Kemmler, R., Frommelt, A., Kaiser, T., Schaupp, U., Schommers, J., Waltner, A. (2002). Thermodynamischer Vergleich ottomotorischer Brennverfahren unter dem Fokus minimalen Kraftstoffverbrauchs. 11. Aachener Kolloquium Fahrzeug- und Motorentechnik.
  37. Specifications engines Evinrude® E-TEC® G2™ 200 HO, 225 HP, 225 HO, 250 HP, 250 HO, 300 HP. Fuel inductions: E-TEC Direct Injection with stratified low RPM combustion mode / Bombardier Recreational Products Inc. 2003-2015. Available at: http://www.evinrude.com/en-US/engines/e-tec-g2/200-ho-300-hp.html#tab=0
  38. Technical Details ROTAX 600 E-TEC. Available at: https://www.rotax.com/en/products/rotax-powertrains/details/rotax-600-ho-e-tec.html
  39. Arcoumanis, C., Kamimoto, T. (Eds.) (2009). Flow and Combustion in Reciprocating Engines. Springer. doi: https://doi.org/10.1007/978-3-540-68901-0
  40. Schumann, F., Sarikoc, F., Buri, S., Kubach, H., Spicher, U. (2012). Potential of spray-guided gasoline direct injection for reduction of fuel consumption and simultaneous compliance with stricter emissions regulations. International Journal of Engine Research, 14 (1), 80–91. doi: https://doi.org/10.1177/1468087412451695
  41. Korogodskyj, V. A., Kyrylyuk, I. O., Lomov, S. G. (2007). Pat. No. WO2009044225A1. A Method of Mixing in a Combustion Chamber of an Internal Combustion Engine and a Spark-Ignition Direct-Injection Stratified Fuel-Air Charge Internal Combustion Engine. No. PCT/IB 2007/004105; declareted: 03.10.2007; published: 09.04.2009. Available at: https://patentimages.storage.googleapis.com/71/bb/f0/2d600f599211e0/WO2009044225A1.pdf
  42. Korohodskyi, V., Khandrymailov, A., Stetsenko, O. (2016). Dependence of the coefficients of residual gases on the type of mixture formation and the shape of a combustion chamber. Eastern-European Journal of Enterprise Technologies, 1 (5 (79)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.59789
  43. Reif, K. (Ed.) (2015). Ottomotor-Management im Überblick. Springer. doi: https://doi.org/10.1007/978-3-658-09524-6
  44. Pesiridis, A. (Ed.) (2014). Automotive Exhaust Emissions and Energy Recovery. En-vironmental, Science, Engineering and Technology. N.Y.: Nova Science Publ. Inc., 293. Available at: https://novapublishers.com/shop/automotive-exhaust-emissions-and-energy-recovery/
  45. Korohodskyi, V. A., Vasylenko, O. V., Tsykra, S. A., Oboznyi, S. V. (2010). Eksperymentalne vyznachennia koefitsienta vytoku robochoho tila pry produvtsi tsylindra u dvotaktnomu dvyhuni z iskrovym zapaliuvanniam. Zbirnyk naukovykh prats UkrDAZT, 112, 203–208.
  46. Martyr, A., Plint, M. (2012). Engine Testing: The Design, Building, Modification and Use of Powertrain Test Facilities. Butterworth-Heinemann, 600. doi: https://doi.org/10.1016/c2010-0-66322-x
  47. Rogovyi, A. (2018). Energy performances of the vortex chamber supercharger. Energy, 163, 52–60. doi: https://doi.org/10.1016/j.energy.2018.08.075
  48. Van Basshuysen, R., Schäfer, F. (Eds.) (2017). Handbuch Verbrennungsmotor. Grundlagen, Komponenten, Systeme, Perspektiven. Springer. doi: https://doi.org/10.1007/978-3-658-10902-8
  49. Reif, K. (Ed.) (2015). Gasoline Engine Management Systems and Components. Springer. doi: https://doi.org/10.1007/978-3-658-03964-6
  50. Song, J., Kim, T., Jang, J., Park, S. (2015). Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine. Energy, 93, 1758–1768. doi: https://doi.org/10.1016/j.energy.2015.10.058
  51. Korogodskiy, V. A., Vasilenko, O. V. (2007). The defenition of combustion parameters under indicator diagrams of a two-stroke engine with the carburettor and direct fuel ingection. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 37, 60–67. Available at: https://cyberleninka.ru/article/n/opredelenie-pokazateley-sgoraniya-po-indikatornym-diagrammam-dvuhtaktnogo-dvigatelya-s-karbyuratorom-i-neposredstvennym-vpryskom
  52. Korohodskiy, V. A., Stetsenko, O. N., Tkachenko, E. A. (2015). The influence stratification of fuel and air charge on combustionindicators two-stroke engines with spark ignition. Zbirnyk naukovykh prats UkrDUZT, 154, 142–148. Available at: http://webcache.googleusercontent.com/search?q=cache:aE7Jtb7Nqr4J:irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe%3FC21COM%3D2%26I21DBN%3DUJRN%26P21DBN%3DUJRN%26IMAGE_FILE_DOWNLOAD%3D1%26Image_file_name%3DPDF/Znpudazt_2015_154_25.pdf+&cd=2&hl=ru&ct=clnk&gl=ua

Downloads

Published

2020-04-30

How to Cite

Korohodskyi, V., Kryshtopa, S., Migal, V., Rogovyi, A., Polivyanchuk, A., Slyn’ko, G., Manoylo, V., Vasylenko, O., & Osetrov, O. (2020). Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal carburation. Eastern-European Journal of Enterprise Technologies, 2(5 (104), 39–52. https://doi.org/10.15587/1729-4061.2020.200766

Issue

Section

Applied physics