Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 6 Par: 5 (2019)  /  Artículo
ARTÍCULO
TITULO

The Application of Computational Thermo-Fluid-Dynamics to the Simulation of Hybrid Rocket Internal Ballistics with Classical or Liquefying Fuels: A Review

Giuseppe Daniele Di Martino    
Carmine Carmicino    
Stefano Mungiguerra and Raffaele Savino    

Resumen

The computational fluid dynamics of hybrid rocket internal ballistics is becoming a key tool for reducing the engine operation uncertainties and development cost as well as for improving experimental data analysis. Nevertheless, its application still presents numerous challenges for the complexity of modeling the phenomena involved in the fuel consumption mechanism and its coupling with the chemically reacting flowfield. This paper presents a review of the computational thermo-fluid-dynamic models developed for the internal ballistics of hybrid rockets burning gaseous oxygen with classical polymeric or paraffin-based fuels, with a special focus on the interaction between the fluid and the solid fuel surface. With the purpose of predicting the local fuel regression rate, which is the main parameter needed for the hybrid rocket design, the model is coupled with an improved gas/surface interface treatment based on local mass, energy and mean mixture-fraction balances, combined to either a pyrolysis-rate equation in the case of classical polymers, or to an additional equation for the liquid paraffin entrainment fraction of the total fuel consumption rate. A number of experimental test cases obtained from the static firing of two different laboratory-scale rockets are simulated to determine the models? capabilities, showing very good agreement between the calculated and measured fuel regression rates with both standard pyrolyzing and liquefying fuels. The prediction of the chamber pressure measured with paraffin fuel resulted in it being more cumbersome for the single-phase flow assumption. The advantages and limitations of the models are discussed.

 Artículos similares

       
 
Yan Wang, Nan Guan, Jie Li and Xiaoli Wang    
Fourier ptychographic microscopy (FPM) is a computational imaging technology that has endless vitality and application potential in digital pathology. Colored pathological image analysis is the foundation of clinical diagnosis, basic research, and most b... ver más
Revista: Applied Sciences

 
Thomas Parr, Karl Friston and Peter Zeidman    
Bayesian inference typically focuses upon two issues. The first is estimating the parameters of some model from data, and the second is quantifying the evidence for alternative hypotheses?formulated as alternative models. This paper focuses upon a third ... ver más
Revista: Algorithms

 
Boqian Ji, Jun Huang, Xiaoqiang Lu, Yacong Wu and Jingjiang Liu    
The wing aerodynamic shape optimization is a typical high-dimensional problem with numerous independent design variables. Researching methods to reduce the dimensionality of optimization from the perspective of aerodynamic characteristics is necessary. O... ver más
Revista: Aerospace

 
Romain Amyot, Noriyuki Kodera and Holger Flechsig    
Simulation of atomic force microscopy (AFM) computationally emulates experimental scanning of a biomolecular structure to produce topographic images that can be correlated with measured images. Its application to the enormous amount of available high-res... ver más
Revista: Algorithms

 
Ulrich A. Ngamalieu-Nengoue, Pedro L. Iglesias-Rey, F. Javier Martínez-Solano and Daniel Mora-Meliá    
Extreme rainfall events cause immense damage in cities where drainage networks are nonexistent or deficient and thus unable to transport rainwater. Infrastructure adaptations can reduce flooding and help the population avoid the associated negative conse... ver más
Revista: Water