Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Trajectory-Tracking Controller Design of Rotorcraft Using an Adaptive Incremental-Backstepping Approach

Useok Jung    
Moon-Gyeang Cho    
Ji-Won Woo and Chang-Joo Kim    

Resumen

This paper treats a robust adaptive trajectory-tracking control design for a rotorcraft using a high-fidelity math model subject to model uncertainties. In order to control the nonlinear rotorcraft model which shows strong inter-axis coupling and high nonlinearity, incremental backstepping approach with state-dependent control effectiveness matrix is utilized. Since the incremental backstepping control suffers from performance degradation in the presence of control matrix uncertainties due to change of flight conditions, control system robustness is improved by combining the least squares parameter estimator to estimate time varying uncertainties contained in the control effectiveness matrix. Also, by selecting a suitable gain set by investigating the error dynamics, a uniform trajectory-tracking performance over operational flight envelope of the rotorcraft is ensured without resorting to the conventional gain scheduling method. To evaluate the proposed controller, comparative results between IBSC and Adaptive IBSC are provided in this paper with sequential maneuvers from the ADS-33E-PRF. The proposed method shows improved tracking performance under variations in control effective matrix in the flight simulation. Robust and stable parameter estimation is also guaranteed due to the implementation of the DF-RLS algorithm for the least squares estimator.

 Artículos similares

       
 
Jairo Olguin-Roque, Sergio Salazar, Iván González-Hernandez and Rogelio Lozano    
This paper proposes a robust algorithm based on a fixed-time sliding mode controller (FTSMC) for a Quadrotor aircraft. This approach is based on Lyapunov theory, which guarantees system stability. Nonlinear error dynamics techniques are used to achieve a... ver más
Revista: Algorithms

 
Wei Li, Jun Zhang, Fang Wang and Hanyun Zhou    
The underactuated unmanned surface vessel (USV) has been identified as a promising solution for future maritime transport. However, the challenges of precise trajectory tracking and obstacle avoidance remain unresolved for USVs. To this end, this paper m... ver más

 
Chengxi Wu, Yuewei Dai, Liang Shan and Zhiyu Zhu    
This paper focuses on developing a data-driven trajectory tracking control approach for autonomous underwater vehicles (AUV) under uncertain external disturbance and time-delay. A novel model-free adaptive predictive control (MFAPC) approach based on a f... ver más

 
Jian Zheng, Wenjun Sun, Yun Li and Jiayin Hu    
In order to solve the multi-objective planning and trajectory tracking control problem related to maritime autonomous surface ships (MASSs), a new design scheme for autonomous navigation is proposed in this paper, with a receding horizon navigation and c... ver más

 
Jing Zhao, Hui Hou, Peng-Sheng Zheng, Da-Han Wang and Yong-Kuan Yang    
Multi-cell cooperative control can be competent for the current increasingly complex biomedical experiments, greatly improving the efficiency of cell manipulation experiments. At present, this kind of multi-cell cooperative control algorithm is becoming ... ver más
Revista: Applied Sciences