Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Climate Impact Mitigation Potential of Formation Flight

Tobias Marks    
Katrin Dahlmann    
Volker Grewe    
Volker Gollnick    
Florian Linke    
Sigrun Matthes    
Eike Stumpf    
Majed Swaid    
Simon Unterstrasser    
Hiroshi Yamashita and Clemens Zumegen    

Resumen

The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft?s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world?s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5?6%.

 Artículos similares

       
 
Bounhome Kimmany, Supattra Visessri, Ponleu Pech and Chaiwat Ekkawatpanit    
This study evaluated the impacts of climate change on hydro-meteorological droughts in the Chao Phraya River Basin (CPRB), Thailand under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). We used three Reginal Climate Models (... ver más
Revista: Water

 
R. J. Roosien, M. N. A. Lim, S. M. Petermeijer and W. F. Lammen    
To reduce the carbon footprint of transport, policymakers are simultaneously stimulating cleaner vehicles and more sustainable mobility choices, such as a shift to rail for short-haul flights within Europe. The purpose of this study is to determine the c... ver más
Revista: Aerospace

 
Md. Khairul Hasan, Mohamed Rasmy, Toshio Koike and Katsunori Tamakawa    
The Sangu River basin significantly contributes to national economy significantly; however, exposures to water-related hazards are frequent. As it is expected that water-related disasters will increase manifold in the future due to global warming, the Go... ver más
Revista: Water

 
Aurelia Scarano, Teodoro Semeraro, Antonio Calisi, Roberta Aretano, Caterina Rotolo, Marcello S. Lenucci, Angelo Santino, Gabriella Piro and Monica De Caroli    
This study explores the potential application of tomato fruit production within the agrivoltaic system, aiming to evaluate its contribution to food security in the context of climate change. Specifically, the study compares tomato cultivation under agriv... ver más
Revista: Applied Sciences

 
Joachim Schulze, Simon Gehrmann, Avikal Somvanshi and Annette Rudolph-Cleff    
The summer of 2022 was one of the hottest and driest summers that Germany experienced in the 21st century. Water levels in rivers sank dramatically with many dams and reservoirs running dry; as a result, fields could not be irrigated sufficiently, and ev... ver más
Revista: Water