Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Multi-Objective Optimization Design of Adaptive Cycle Engine with Serpentine 2-D Exhaust System Based on Infrared Stealth

Haoying Chen    
Yifan Wang and Haibo Zhang    

Resumen

In the overall design process of the turbofan engine, it has become crucial to address the challenge of selecting design parameters that not only meet the flight thrust demand but also enhance engine economy. As the demand for stealth performance in future fighter aircraft increases, it becomes imperative to consider infrared stealth indicators during the design process. The adaptive cycle engine possesses an adjustable thermal cycle, necessitating careful attention to the selection of design parameters to fulfill the requirements. Therefore, this paper proposes a multi-objective optimization design method for the adaptive cycle engine that integrates infrared stealth technology. Initially, the parameter cycle model of the adaptive cycle engine is established based on the principles of aerodynamic and thermodynamic calculations. Subsequently, the model incorporates a serpentine two-dimensional (2-D) exhaust system to achieve infrared suppression. Meanwhile, a method for predicting the infrared characteristics is proposed to calculate the infrared radiation intensity of the engine exhaust system. Finally, the sequential quadratic programming algorithm is applied to comprehensively optimize the engine?s performance. The simulation results reveal that the multi-objective optimization design can effectively select appropriate design parameters to im-prove the engine, thereby reducing fuel consumption while meeting thrust requirements. This approach combines the consideration of infrared stealth technology with the optimization of engine performance, thus contributing to the development of advanced adaptive cycle engines.

 Artículos similares

       
 
Claudia Cavallaro, Carolina Crespi, Vincenzo Cutello, Mario Pavone and Francesco Zito    
This paper introduces an agent-based model grounded in the ACO algorithm to investigate the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on understanding the roles of group size and number within a multi-objecti... ver más
Revista: Algorithms

 
Saile Zhang, Qingzhen Yang, Rui Wang and Xufei Wang    
The use of traditional optimization methods in engineering design problems, specifically in aerodynamic and infrared stealth optimization for engine nozzles, requires a large number of objective function evaluations, therefore introducing a considerable ... ver más
Revista: Aerospace

 
Aliyye Kara, Ibrahim Eksin and Ata Mugan    
The design optimization of structures can be conducted in either the time domain or the frequency domain. The frequency domain approach is advantageous compared to its time domain counterpart, especially if the degree of freedom is large, the objectives ... ver más
Revista: Applied Sciences

 
Tomasz Rogala, Mateusz Scieszka, Andrzej Katunin and Sandris Rucevskis    
Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement ... ver más
Revista: Applied Sciences

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace