Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Cancers  /  Vol: 9 Núm: 3 Par: March (2017)  /  Artículo
ARTÍCULO
TITULO

Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment

David Gyori    
Tamara Chessa    
Phillip T. Hawkins and Len R. Stephens    

Resumen

Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3Ka, PI3Kß, PI3K? and PI3Kd) mediate the phosphorylation of the inositol ring at position D3 leading to the generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases, of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class (I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood cell-selective PI3K? and PI3Kd isoforms have an important role in regulating the immune-suppressive, tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are also critical for solid tumor growth. Moreover, PI3Ka is implicated in the direct regulation of tumor angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors may act as potent cancer immunotherapeutic and anti-angiogenic agents.

 Artículos similares