Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 5 Núm: 1 Par: March (2018)  /  Artículo
ARTÍCULO
TITULO

Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

Michael Schultz    

Resumen

Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays). To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading), which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers? experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

 Artículos similares

       
 
Frédéric Moëns    
A multidisciplinary design analysis and optimization process is developed at ONERA for the design of tube and wing and blended wing?body aircraft configurations. This process is composed of different disciplinary modules (geometry, propulsion, aerodynami... ver más
Revista: Aerospace

 
Marco-Michael Temme, Olga Gluchshenko, Lennard Nöhren, Matthias Kleinert, Oliver Ohneiser, Kathleen Muth, Heiko Ehr, Niklas Groß, Annette Temme, Martina Lagasio, Massimo Milelli, Vincenzo Mazzarella, Antonio Parodi, Eugenio Realini, Stefano Federico, Rosa Claudia Torcasio, Markus Kerschbaum, Laura Esbrí, Maria Carmen Llasat, Tomeu Rigo and Riccardo Biondiadd Show full author list remove Hide full author list    
In the H2020 project ?Satellite-borne and INsitu Observations to Predict The Initiation of Convection for ATM? (SINOPTICA), an air traffic controller support system was extended to organize approaching traffic even under severe weather conditions. During... ver más
Revista: Aerospace

 
Francesco Petrosino and Mattia Barbarino    
Scientific research studies on jet noise generation have been ongoing since the early 1950s, when turbojets were first used in commercial aircraft. Several numerical methods have been developed with the aim of reducing the environmental issues related to... ver más
Revista: Aerospace

 
Wenqi Cheng and Baigang Mi    
A new high-efficiency method based on a particle swarm optimization and long short-term memory network is proposed in this study to predict the aerodynamic forces in an unsteady state. Based on the predicted aerodynamic forces, the dynamic derivative is ... ver más
Revista: Applied Sciences

 
Stan Proskurov, Markus Lummer, Jan Werner Delfs, Roland Ewert, Jochen Kirz, Martin Plohr and Robert Jaron    
Overcoming the problem of excessive engine noise at low altitudes is a formidable task on the way to developing a supersonic passenger aircraft. The focus of this paper is on the fan noise shielding during take-off, investigated as part of the DLR projec... ver más
Revista: Aerospace