Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 7 Núm: 4 Par: April (2017)  /  Artículo
ARTÍCULO
TITULO

The Effect of Temperature Field on Low Amplitude Oscillatory Flow within a Parallel-Plate Heat Exchanger in a Standing Wave Thermoacoustic System

Fatimah A.Z. Mohd Saat and Artur J. Jaworski    

Resumen

Thermoacoustic technologies rely on a direct power conversion between acoustic and thermal energies using well known thermoacoustic effects. The presence of the acoustic field leads to oscillatory heat transfer and fluid flow processes within the components of thermoacoustic devices, notably heat exchangers. This paper outlines a two-dimensional ANSYS FLUENT CFD (computational fluid dynamics) model of flow across a pair of hot and cold heat exchangers that aims to explain the physics of phenomena observed in earlier experimental work. Firstly, the governing equations, boundary conditions and preliminary model validation are explained in detail. The numerical results show that the velocity profiles within heat exchanger plates become distorted in the presence of temperature gradients, which indicates interesting changes in the flow structure. The fluid temperature profiles from the computational model have a similar trend with the experimental results, but with differences in magnitude particularly noticeable in the hot region. Possible reasons for the differences are discussed. Accordingly, the space averaged wall heat flux is discussed for different phases and locations across both the cold and hot heat exchangers. In addition, the effects of gravity and device orientation on the flow and heat transfer are also presented. Viscous dissipation was found to be the highest when the device was set at a horizontal position; its magnitude increases with the increase of temperature differentials. These indicate that possible losses of energy may depend on the device orientation and applied temperature field.

 Artículos similares

       
 
Arjun Poudel, Seungwon Kim, Byoung Hooi Cho and Janghwan Kim    
Composite bridges are typically exposed to temperature variations due to heat radiation, conduction, and convection. Temperature affects the modal parameters of bridges, hindering the application of damage detection methods based on the dynamic propertie... ver más
Revista: Applied Sciences

 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Jounghoon Lim, Jinkee Kim and Jong Pal Kim    
A system has been developed to remotely, continuously, and quantitatively measure the physiological activity of trees. The developed tree physiological activity monitoring (TPAM) system is equipped with electrical impedance, temperature, and light intens... ver más
Revista: Applied Sciences

 
Ane?ka Kopecká, Lenka Kourimská, Petra ?kvorová, Michal Kurecka and Martin Kulma    
The nutritional quality of insects is related to many factors, including their rearing conditions. In this study, the effects of temperature on the contents of crude protein, lipids, ash, and amino acids and the body size and weight of Tenebrio molitor l... ver más
Revista: Applied Sciences

 
Yu Li, Jingyi Ouyang, Yong Peng and Yang Liu    
Cavitation happening inside an inclined V-shaped corner is a common and important phenomenon in practical engineering. In the present study, the lattice Boltzmann models coupling velocity and temperature fields are adopted to investigate this complex col... ver más
Revista: Water