Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water  /  Vol: 10 Núm: 3 Par: 0 (2018)  /  Artículo
ARTÍCULO
TITULO

Using Sap Flow Data to Parameterize the Feddes Water Stress Model for Norway Spruce

Inken Rabbel    
Heye Bogena    
Burkhard Neuwirth and Bernd Diekkrüger    

Resumen

Tree water use is a key variable in forest eco-hydrological studies and is often monitored by sap flow measurements. Upscaling these point measurements to the stand or catchment level, however, is still challenging. Due to the spatio-temporal heterogeneity of stand structure and soil water supply, extensive measuring campaigns are needed to determine stand water use from sap flow measurements alone. Therefore, many researchers apply water balance models to estimate stand transpiration. To account for the effects of limited soil water supply on stand transpiration, models commonly refer to plant water stress functions, which have rarely been parameterized for forest trees. The aim of this study was to parameterize the Feddes water stress model for Norway spruce (Picea abies [L.] Karst.). After successful calibration and validation of the soil hydrological model HYDRUS-1D, we combined root-zone water potential simulations with a new plant water stress factor derived from sap flow measurements at two plots of contrasting soil moisture regimes. By calibrating HYDRUS-1D against our sap flow data, we determined the critical limits of soil water supply. Drought stress reduced the transpiration activity of mature Norway spruce at root-zone pressure heads <-4100 cm, while aeration stress was not observed. Using the recalibrated Feddes parameters in HYDRUS-1D also improved our water balance simulations. We conclude that the consideration of sap flow information in soil hydrological modeling is a promising way towards more realistic water balance simulations in forest ecosystems.

 Artículos similares

       
 
Syed Sikandar Shah, Bruno Ramos and Antonio Carlos Silva Costa Teixeira    
Hydrogels have attracted great attention as good adsorbents due to their extraordinary water retention capacity, unique hydrophilic nature, biocompatibility, and abundance in availability. In this work, a superabsorbent polymer (SAP) hydrogel and its com... ver más
Revista: Water

 
Jindrich Melichar, Nikol ?i?ková, Jirí Bro?ovský, Lenka Mészárosová and Radek Hermann    
The use of superabsorbent polymers (SAP) in construction is a relatively new trend, and not a completely explored area. However, SAP itself has been on the market for over 80 years. SAPs have a cross-linked three-dimensional structure, thanks to which th... ver más
Revista: Buildings

 
Shujun Hou, Hailong Sun and Yinghua Zhou    
Super absorbent polymer (SAP), known as a water retention agent, has a high capacity for water absorption, which can help enhance the soil structure. This paper studied the effects of SAP dosages on the root characteristics and anchorage of Amorpha fruti... ver más
Revista: Applied Sciences

 
Shiqin Xu and Zhongbo Yu    
Arid and semi-arid ecosystems represent a crucial but poorly understood component of the global water cycle. Taking a desert ecosystem as a case study, we measured sap flow in three dominant shrub species and concurrent environmental variables over two m... ver más
Revista: Water

 
Teresa A. Paço, Paula Paredes, Luis S. Pereira, José Silvestre and Francisco L. Santos    
The SIMDualKc model was used to simulate crop water requirements for a super high density olive orchard in the region of Alentejo, Portugal. This model uses the dual crop coefficient approach to estimate and partitioning the actual crop evapotranspiratio... ver más
Revista: Water