Efeito de nanotubos de carbono sobre as propriedades térmicas e mecânicas de biopolímeros

  • Maria Clara Guimarães Pedrosa Instituto de Macromoléculas Professora Eloisa Mano - Universidade Federal do Rio de Janeiro - IMA UFRJ
  • Lívia Rodrigues de Menezes Instituto de Macromoléculas Professora Eloisa Mano - Universidade Federal do Rio de Janeiro - IMA UFRJ
  • Emerson Oliveira da Silva Instituto de Macromoléculas Professora Eloisa Mano - Universidade Federal do Rio de Janeiro - IMA UFRJ

Resumo

Nanotubos de carbono (CNT) têm sido amplamente estudados no desenvolvimento de nanocompósitos poliméricos devido às suas elevadas propriedades térmicas e mecânicas. Entretanto os biopolímeros, classe que também ganhou grande interesse em busca de materiais sustentáveis, apresentam propriedades inferiores aos polímeros tradicionais, o que pode limitar sua aplicação. Desta forma, o objetivo desse artigo consistiu na realização de uma revisão de literatura, a fim de determinar o atual estado da arte dos nanocompósitos de CNT em matrizes de biopolímeros. Com base nesse levantamento bibliográfico pode-se dizer que de maneira geral, sistemas com adequada dispersão demonstram uma maior resistência térmica que as matrizes puras, bem como levam ao aumento das propriedades mecânicas favorecidas pela maior rigidez do sistema.

Referências

ARMENTANO, I.; BITINIS, N.; FORTUNATI, E.; MATTIOLI, S.; RESCIGNANO,N.; VERDEJO, R.; LOPEZ-MANCHADO, M. A.; KENNY, J. M. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, [S.l.], v. 38, p. 1212-1214, 2013. DOI: 10.1016/j.progpolymsci.2013.05.010.

AURAS, R.; HARTE, B.; SELKE, S. An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, [S.l.], v. 4, p. 835-864, 2004. DOI: 10.1002/mabi.200400043.

BARTHOLOME, C.; MIAUDET, P.; DERRÉ, A.; MAUGEY, M.; ROUBEAU, O.; ZAKRI, C.; POULIN, P. Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites. Composites Science and Technology, [S.l.], v. 68, p. 2568-2573, 2008. DOI: 10.1016/j.compscitech.2008.05.021.

BIN, Y.; MINE, M.; KOGANEMARU, A.; JIANG, X.; MATSUO, M. Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites. Polymer, [S.l.], v. 47, p. 1308-1317, 2006. DOI: 10.1016/j.polymer.2005.12.032.

BREDEAU, S.; PEETERBROECK, S.; BONDUEL, D.; ALEXANDRE, M.; DUBOIS, P. From carbon nanotubes coatings to high-performance polymer nanocomposites. Polymer International, [S.l.], v. 57, p. 547-553, 2008. DOI: 10.1002/pi.2375.

CAPEK, I. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Advances in Colloid and Interface Science, [S.l.], v. 150, p. 63-89, 2009. DOI: 10.1016/j.cis.2009.05.006.

CHRISSAFIS, K. Detail kinetic analysis of the thermal decomposition of PLA with oxidized multi-walled carbon nanotubes. Thermochimica Acta, [S.l.], v. 511, p. 163-167, 2010. DOI: 10.1016/j.tca.2010.08.009.

CHRISSAFIS, K.; PARASKEVOPOULOS, K. M.; JANNAKOUDAKIS, A.; BESLIKAS, T.; BIKIARIS, D. Oxidized Multiwalled Carbon Nanotubes as Effective Reinforcement and Thermal Stability Agents of Poly(lactic acid) Ligaments. Journal of Applied Polymer Science, [S.l.], v. 118, p. 2712-2721, 2010. DOI: 10.1002/app.32626.

GARLOTTA, D. A Literature Review of Poly(Lactic Acid). Journal of Polymer and the Environment, [S.l.], v. 9, n. 2, p. 63-84, 2001. DOI: 10.1023/A:1020200822435.

GOGOTSI, Yury. Nanotubes and Nanofibers. Boca Raton, FL: CRC Taylor & Francis, 2006.
GROSS, R. A.; KALRA, B. Biodegradable Polymers for the Environment. Science, [S.l.], v. 297, n. 5582, p. 803-807, 2002. DOI: 10.1126/science.297.5582.803.

HANDBOOK of materials for nanomedicine. Pan Stanford Publishing, v.1, 2005.
KIM, H. S.; CHAE, Y. S.; PARK, B. H.; YOON, J. S.; KANG, M.; JIN, H. J. Thermal and electrical conductivity of poly(L-lactide)/multiwalled carbon nanotube nanocomposites. Current Applied Physics, [S.l.], v. 8, p. 803-806, 2008. DOI: 10.1016/j.cap.2007.04.032.

KIM, H. S.; PARK, B. H.; YOON, J. S.; JIN, H. J. Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites. European Polymer Journal, [S.l.], v. 43, p. 1729-1735, 2007. DOI: 10.1016/j.eurpolymj.2007.02.025.

KUAN, C. F.; KUAN, H. C.; CHEN, C. H.; LIN, K. C.; CHIANG, C. L.; PENG, H. C. Multi-walled carbon nanotube reinforced poly(L-lactic acid) nanocomposites enhanced by water crosslinking reaction. Journal of Physics and Chemistry of Solids, [S.l.], v. 69, p. 1399-1402, 2008b. DOI: 10.1016/j.jpcs.2007.10.061.

KUAN, C. F.; KUAN, H. C.; MA, C. C. M.; CHEN, C. H.; Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. Journal of Physics and Chemistry of Solids, [S.l.], v. 69, p. 1395-1398, 2008a. DOI: 10.1016/j.jpcs.2007.10.060.

LAI, M.; LI, J.; YANG, J.; LIU, J.; TONG, X.; CHENG, H. The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polymer International, [S.l.], v. 53, p. 1479-1484, 2004. DOI: 10.1002/pi.1566.

LUNT, J. Large-scale production, properties and commercial applications pf polylactic acid polymers. Polymer Degradation and Stability, Northen Ireland, v. 59, p. 145-152, 1998. DOI: 10.1016/S0141-3910(97)00148-1.

MA, P. C.; SIDDIQUI, N. A.; MAROM, G.; KIM, J. K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A, [S.l.], v. 41, p. 1345-1367, 2010. DOI: 10.1016/j.compositesa.2010.07.003.

MA, Y.; ZHENG, Y.; WEI, G.; SONG, W.; HU, T.; YANG, H.; XUE, R. Processing, Structure, and Properties of Multiwalled Carbon Nanotube/Poly(hydroxybutyrate-co-valerate) Biopolymer Nanocomposites. Journal of Applied Polymer Science, [S.l.], v. 125, p. 620-629, 2012. DOI: 10.1002/app.35650.

MALIKOV, E. Y.; MURADOV, M. B.; AKPEROV, O. H.; EYVAZOVA, G. M.; PUSKÁS, R.; MADARÁSZ, D.; NAGY, L.; KUKOVECZ, A.; KÓNYA, Z. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites. Physica E, [S.l.], v. 61, p. 129-134, 2014. DOI: 10.1016/j.physe.2014.03.026.

MALLAKPOUR, S.; ABDOLMALEKI, A.; BORANDEH, S. L-Phenylalanine amino acid functionalized mutli walled carbon nanotube (MWCNT) as a reinforced filler for improving mechanical and morphological properties of poly(vinyl alcohol)/ MWCNT composite. Progress in Organic Coatings, [S.l.], v. 77, p. 1966-1971, 2014. DOI: 10.1016/j.porgcoat.2014.07.005.

MALLAKPOUR, S.; DINARI, M. Biomodification of Cloisite Na+ with L-Methionine Amino Acid and Preparation of Poly(vinyl alcohol)/Organoclay Nanocomposite Films. Journal of Applied Polymer, [S.l.], v. 124, p. 4322-4330, 2012. DOI: 10.1002/app.35540.

MONIRUZZAMAN, M.; WINEY, K. I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, [S.l.], v. 39, n. 16 p. 5194-5205, 2006. DOI: 10.1021/ma060733p.

MUBARAK, N. M.; ABDULLAH, E. C.; JAYAKUMAR, N. S.; SAHU, J. N. An overview on methods for the production of carbon nanotube. Journal of Industrial and Engineering Chemistry, [S.l.], v. 20, p. 1186-1197, 2014. DOI: 10.1016/j.jiec.2013.09.001.

NAFFAKH, M.; DÍEZ-PASCUAL, A. M.; MARCO, C.; ELLIS G. J.; GÓMEZ-FATOU, M. A. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Progress in Polymer Science, [S.l.], v. 38, p. 1163-1231, 2013. DOI: 10.1016/j.progpolymsci.2013.04.001.

OJIJO, V.; RAY, S. S. Processing strategies in bionanocomposites. Progress in Polymer Science, [S.l.], v. 38, p. 1543-1589, 2013. DOI: 10.1016/j.progpolymsci.2013.05.011.

OKAMOTO, M.; JOHN, B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, [S.l.], v. 38, p. 1487-1503, 2013. DOI: 10.1016/j.progpolymsci.2013.06.001.

PAUL, D. R.; ROBESON, L. M. Polymer nanotechnology: Nanocomposites. Polymer, [S.l.], v. 49, p. 3187- 3204, 2008. DOI: 10.1016/j.polymer.2008.04.017.

RAQUEZ, J. M.; HABIBI, Y.; MURARIU, M.; DUBOIS, P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, [S.l.], v. 38, p. 1504-1542, 2013. DOI: 10.1016/j.progpolymsci.2013.05.014.

REDDY, M. M.; VIVEKANANDHAN, S.; MISRA, M.; BHATIA, S. K.; MOHANTY, A. K. Bio-nanocomposites for food packaging applications. Progress in Polymer Science, [S.l.], v. 38, p. 1653-1689, 2013. DOI: 10.1016/j.progpolymsci.2013.05.006.

RHIM, J. W.; PARK, H. M.; HA, C. S. Bio-nanocomposites for food packaging applications. Progress in Polymer Science, [S.l.], v. 38, p. 1629-1652, 2013. DOI: 10.1016/j.progpolymsci.2013.05.008.

ROSA, D. S.; LOTTO, N. T.; LOPES, D. R.; GUEDES, C. G. F. The use of roughness for evaluating the biodegradation of poly-ß-(hydroxybutyrate) and poly-ß-(hydroxybutyrate-co-ß-valerate). Polymer Testing, [S.l.], v. 23, p. 3-8, 2004. DOI:10.1016/S0142-9418(03)00042-4.

SAHOO, N. G.; RANA, S.; CHO, J. W.; LI, L.; CHAN, S. H. Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, [S.l.], v. 35, p. 837-867, 2010. DOI: 10.1016/j.progpolymsci.2010.03.002.

SANCHEZ-GARCIA, M. D.; LAGARON, J. M.; HOA, S. V. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymer. Composites Science and Technology, [S.l.], v. 70, p. 1095-1105, 2010. DOI: 10.1016/j.compscitech.2010.02.015.

SELIGRA, P. G.; NUEVO, F.; LAMANNA, M.; FAMÁ, L. Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Composites: Part B, [S.l.], v. 46, p. 61-68, 2013. DOI:10.1016/j.compositesb.2012.10.013.

SEPAHVAND, R.; ADELI, M.; ASTINCHAP, B.; KABIRI, R. New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. Journal of Nanoparticles Research, [S.l.], v. 10, p. 1309-1318, 2008. DOI 10.1007/s11051-008-9411-2.

SOUZA FILHO, A. G. de; FAGAN, S. B. Funcionalização de nanotubos de Carbono. Química Nova, São Paulo, v. 30, n. 7, p. 1695-1703, 2007.

SPITALSKY, Z.; TASIS, D.; PAPAGELIS, K.; GALIOTIS, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, [S.l.], v. 35, p. 357-401, 2010. DOI: 10.1016/j.progpolymsci.2009.09.003.

STEFOV, V.; NAJDOSKI, M.; BOGOEVA-GACEVA, G.; BUZAROVSKA, A. Properties assessment of multiwalled carbon nanotubes: A comparative study. Synthetic Metals, [S.l.], v. 197, p. 159-167, 2014. DOI:10.1016/j.synthmet.2014.09.011.

THOSTENSON, E. T.; REN, Z.; CHOU, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, [S.l.], v. 61, p. 1899-1912, 2001. DOI: 10.1016/S0266-3538(01)00094-X.

WANG, N.; LI, G. D.; TANG, Z. K. Mono-sized and single-walled 4 Å carbon nanotubes. Chemical Physics Letter, [S.l.], v. 339, p. 47-52, 2001. DOI: 10.1016/S0009-2614(01)00302-5

WANG, N.; LI, G. D.; TANG, Z. K.; CHEN, J. S. Single-walled 4 Å carbon nanotube arrays. Nature: Material Science, [S.l.], v. 408, p. 50-51, 2000. DOI: 10.1038/35040702.

WU, C-S.; LIAO, H-T. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer, [S.l.], v. 48, p. 4449-4458, 2007. DOI: 10.1016/j.polymer.2007.06.004.

WU, D.; WU, L.; ZHANG, M.; ZHAO, Y. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polymer Degradation and Stability, [S.l.], v. 93, p. 1577-1584, 2008. DOI: 10.1016/j.polymdegradstab.2008.05.001.

YU, H. Y.; QIN, Z. Y.; SUN, B.; YANG, X. G.; YAO, J. M. Reinforcement of transparent poly(3-hydroxybutyrate-co-30hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposites for food packaging. Composites Science and Technology, [S.l.], v. 94, p. 96-104, 2014. DOI: 10.1016/j.compscitech.2014.01.018.

ZHAO, C.; TAN, A.; PASTORIN, G.; HO, H. K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, [S.l.], v. 31, p. 654-668, 2013. DOI: 10.1016/j.biotechadv.2012.08.001.

ZHENG, L. X.; O`CONNELL, M. J.; DOORN, S. K.; LIAO, X. Z.; ZHAO, Y. H.; AKHADOV, E. A.; HOFFBAUER, M. A.; ROOP, B. J.; JIA, Q. X.; DYE, R. C.; PETERSON, D. E. HUANG, S. M.; LIU, J.; ZHU, Y. T. Ultralong single-wall carbon nanotubes. Nature: Materials, [S.l.], v. 3, p. 673-676, 2004. DOI: 10.1038/nmat1216.
Publicado
2016-07-15
Como Citar
PEDROSA, Maria Clara Guimarães; MENEZES, Lívia Rodrigues de; SILVA, Emerson Oliveira da. Efeito de nanotubos de carbono sobre as propriedades térmicas e mecânicas de biopolímeros. Acta Scientiae et Technicae, [S.l.], v. 4, n. 1, jul. 2016. ISSN 2317-8957. Disponível em: <http://www.uezo.rj.gov.br/ojs/index.php/ast/article/view/90>. Acesso em: 05 jun. 2024. doi: https://doi.org/10.17648/uezo-ast-v4i1.90.
Seção
Artigos