Analytical and experimental studies into the processes of hydrodynamics and heat exchange in the channels of disk pulse devices

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.174629

Keywords:

disk pulse device, optimization, energy efficiency, heat generator design, rotor, working chamber geometry

Abstract

The paper reports an analytical study into the influence of basic parameters of channels in the pulse disk devices on the efficiency of processes of heat exchange and hydrodynamics under the pulse effect on a heat-carrier. A procedure has been proposed for determining basic parameters for the processes of heat exchange and hydrodynamics (flow rate, pressure, a heat-carrier’s temperature) when a liquid is exposed to the pulse effect. Mathematical models have been constructed for the influence of structural and technological parameters of channels in the disk pulse devices on the efficiency of processes of heat exchange and hydrodynamics. Adequacy of the mathematical models has been confirmed by a series of experimental studies involving devices with a single- and multi-step system of the pulse treatment of a heat-carrier. Based on this, we have designed, tested, and implemented industrial structures of the pulse disk heat generators for decentralized heating of buildings for industrial and residential purposes with the single- and two-step pulse influence. The constructed method for a multi-step pulse influence, taking into consideration the results from mathematical modeling, experimentally confirmed and implemented in the structural design of a working chamber in a disk pulse heat generator, has made it possible to improve its energy efficiency by 12 %. We have defined the most efficient geometry for a disk pulse heat generator aimed at its further integration into the system of decentralized heating.

A series of experimental studies has been performed, which confirm energy efficiency of the designed devices. One of the designed heat generators with a multistep pulse influence on a heat-carrier has been integrated into a heating system for a shopping mall. Indicators of the heat generator operation meet modern standards of energy efficiency at the level of 0.86‒0.9.

Author Biographies

Valeriy Nikolsky, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Energetic

Ivan Kuzyayev, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Mechanical Engineering and Mechanical Engineering

Oleksandr Alieksandrov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Senior Lecturer

Department of Applied Mechanics

Viktor Ved, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Senior Lecturer

Department of Equipment of Chemical Plants

Andrii Pugach, Dnipro State Agrarian and Economic University Serhiya Efremova str., 25, Dnipro, Ukraine, 49600

Doctor of Science in Public Administration, PhD, Associate Professor

Department of Agricultural Machinery

Vadim Yaris, LLC Soyuztechnoprom Production Co. Kirova ave., 91, Dnipro, Ukraine, 49054

PhD, Associate Professor, Director

Serhiy Ptitsyn, Ukrainian-Turkmen educational center "Erkin" D. Yavornytskoho ave., 94, Dnipro, Ukraine, 49038

PhD, Associate Professor, Technical Director

Valerii Lopatin, Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine Simferopolska str., 2-a, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Senior Researcher

Department of Mining Thermoaero Dynamics and Automated Systems

References

  1. Promtov, M. A. (2001). Pul'satsionnye apparaty rotornogo tipa: teoriya i praktika. Moscow, 260.
  2. Ved, V., Nikolsky, V., Oliynyk, O., Lipeev, A. (2017). Examining a cavitation heat generator and the control method over the efficiency of its operation. Eastern-European Journal of Enterprise Technologies, 4 (8 (88)), 22–28. doi: https://doi.org/10.15587/1729-4061.2017.108580
  3. Nikolsky, V., Oliynyk, O., Ved, V., Svietkina, O., Pugach, A., Shvachka, A. (2018). Design and study of the energy­efficient unified apparatuses for energy­technological manufacturing. Eastern-European Journal of Enterprise Technologies, 3 (8 (93)), 59–65. doi: https://doi.org/10.15587/1729-4061.2018.132572
  4. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1–16. doi: https://doi.org/10.4028/www.scientific.net/ssp.277.1
  5. Nikolsky, V., Yariz, V., Reshetnyak, I. (2017). Improvement of energy efficiency in the operation of a thermal reactor with submerged combustion apparatus through the cyclic input of energy. Eastern-European Journal of Enterprise Technologies, 2 (8 (86)), 39–44. doi: https://doi.org/10.15587/1729-4061.2017.97914
  6. Park, J. T., Cutbirth, J. M., Brewer, W. H. (2003). Hydrodynamic Performance of the Large Cavitation Channel (LCC). Volume 2: Symposia, Parts A, B, and C. doi: https://doi.org/10.1115/fedsm2003-45599
  7. Lin, J., Lin, B.-L., Sun, J., Chen, Y.-L. (2016). Modelling hydrodynamic processes in tidal stream energy extraction. Journal of Hydrodynamics, 28 (6), 1058–1064. doi: https://doi.org/10.1016/s1001-6058(16)60711-4
  8. Dealy, J. M., Wissbrun, K. F. (2012). Melt rheology and its role in plastics processing: theory and applications. Springer Science & Business Media, 680.
  9. Tadmor, Z., Gogos, C. G. (2013). Principles of polymer processing. John Wiley & Sons, 962.
  10. Kuziaiev, I. M. (2008). Modeliuvannia roboty ta proektuvannia ekstruziynykh ahrehativ z rozrobkoiu elementiv SAPR. Dnipropetrovsk: DVNZ UDKhTU, 474.
  11. Kuzyaev, I. M., Sviderskiy, V. A., Petuhov, A. D. (2016). Modelirovanie ekstruzii i ekstruderov pri pererabotke polimerov. Ch. 1. Kyiv: NTUU «KPI» Izd-vo «Politekhnika», 412.
  12. Momani, S., Odibat, Z. (2006). Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Applied Mathematics and Computation, 177 (2), 488–494. doi: https://doi.org/10.1016/j.amc.2005.11.025
  13. Girimaji, S. S. (2006). Partially-Averaged Navier-Stokes Model for Turbulence: A Reynolds-Averaged Navier-Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 73 (3), 413–421. doi: https://doi.org/10.1115/1.2151207
  14. Hirsch, C. (2007). Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Elsevier, 680. doi: https://doi.org/10.1016/b978-0-7506-6594-0.x5037-1
  15. Vetchanin, E. V., Kilin, A. A. (2016). Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid. Proceedings of the Steklov Institute of Mathematics, 295 (1), 302–332. doi: https://doi.org/10.1134/s0081543816080186
  16. Ma, Y., Liu, H., Zhu, Y., Wang, F., Luo, Z. (2017). The NARX Model-Based System Identification on Nonlinear, Rotor-Bearing Systems. Applied Sciences, 7 (9), 911. doi: https://doi.org/10.3390/app7090911
  17. Shevchuk, I. V. (2009). Convective heat and mass transfer in rotating disk systems. Springer, 236. doi: https://doi.org/10.1007/978-3-642-00718-7
  18. Sheikholeslami, M., Ganji, D. D. (2013). Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, 873–879. doi: https://doi.org/10.1016/j.powtec.2012.11.030
  19. Liu, C., Walkington, N. J. (2007). Convergence of Numerical Approximations of the Incompressible Navier–Stokes Equations with Variable Density and Viscosity. SIAM Journal on Numerical Analysis, 45 (3), 1287–1304. doi: https://doi.org/10.1137/050629008
  20. Escudier, M. P., Oliveira, P. J., Pinho, F. T. (2002). Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation. International Journal of Heat and Fluid Flow, 23 (1), 52–73. doi: https://doi.org/10.1016/s0142-727x(01)00135-7
  21. Rayher, Yu. L., Rusakov, V. V. (2008). Vraschatel'naya vyazkost' vyazkouprugoy magnitnoy zhidkosti. Kolloidnyy zhurnal, 70 (1), 85–92.
  22. Lavrent'ev, M. A., Shabat, B. V. (1973). Metody teorii funktsiy kompleksnogo peremennogo. Moscow: Nauka, 736.
  23. Kuziaiev, I. M. (2002). Modeliuvannia neizotermichnykh protsesiv v robochomu obiemi cherviachnykh nasosiv dlia anomalno viazkykh ridyn. Voprosy himii i himicheskoy tekhnologii, 2, 107–112.
  24. Kamke, E. (1976). Spravochnik po obyknovennym differentsial'nym uravneniyam. Moscow: Nauka, 576.
  25. Antsiferov, S. S., Rusanov, K. E., Afanas'ev, M. S. (2014). Obrabotka rezul'tatov izmereniy. Moscow, 228.
  26. Promtov, M. A., Akulin, V. V. (2006). Mechanisms of Heat Generating in the Rotor Impulse Apparatus. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 12 (2A), 364–369.

Downloads

Published

2019-08-01

How to Cite

Nikolsky, V., Kuzyayev, I., Alieksandrov, O., Ved, V., Pugach, A., Yaris, V., Ptitsyn, S., & Lopatin, V. (2019). Analytical and experimental studies into the processes of hydrodynamics and heat exchange in the channels of disk pulse devices. Eastern-European Journal of Enterprise Technologies, 4(8 (100), 15–23. https://doi.org/10.15587/1729-4061.2019.174629

Issue

Section

Energy-saving technologies and equipment