Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Proposed Data-Driven Performance Measures for Comparing and Ranking Traffic Bottlenecks

David Hale    
Ali Hajbabaie    
Jiaqi Ma    
Jia Hu    
... Joe Bared    

Resumen

To justify investments towards improved traffic operations, engineers and policy-makers need scientific and accurate methods of congestion measurement. However, status-quo methods are limited and/or outdated. Peak-hour analyses are becoming outdated as a sole source of traffic assessment, because they fail to account for changing conditions throughout the year. There has been a movement towards ?reliability? modeling, which attempts to capture these annual effects. But due to significant input data and calibration requirements, the reliability models suffer from practicality issues. Next, there have been recent improvements in data-driven ITS technologies, which identify congestion in real time. However, there is room for improvement in the robustness of performance measures derived from these technologies. Finally, some engineers have compared and ranked congested locations (i.e., bottlenecks) on the basis of experience and judgment. Despite their cost-effectiveness, judgment-based qualitative assessments will lack credibility unless backed by quantitative results. In a recent Federal Highway Administration study, congestion measurement was a primary area of emphasis. This paper discusses project-specific software development, which produced new and innovative performance measures for congestion measurement. It will present concepts and evidence to imply superiority of the proposed new measures. This paper is intended to serve as a preview of a future full journal paper; which will rank ten or more real-world bottlenecks according to new and old performance measures, to demonstrate impacts of the new measures. It is hoped that the new performance measures will be adopted by states and/or commercial products, for a new level of robustness in congestion measurement.

 Artículos similares

       
 
Rui Wang and Yijing Li    
Given the paramount impacts of COVID-19 on people?s lives in the capital of the UK, London, it was foreseeable that the city?s crime patterns would have undergone significant transformations, especially during lockdown periods. This study aims to testify... ver más

 
Jia-Ling Xie, Wei-Feng Shi, Ting Xue and Yu-Hang Liu    
The fault detection and diagnosis of a ship?s electric propulsion system is of great significance to the reliability and safety of large modern ships. The traditional fault diagnosis method based on mathematical models and expert knowledge is limited by ... ver más

 
Dingnan Song, Ran Liu, Zhiwei Zhang, Dingding Yang and Tianzhen Wang    
Tidal stream turbines (TSTs) harness the kinetic energy of tides to generate electricity by rotating the rotor. Biofouling will lead to an imbalance between the blades, resulting in imbalanced torque and voltage across the windings, ultimately polluting ... ver más

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms