Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water Research  /  Vol: 126 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters

David I. Walker    
Jonathan McQuillan    
Michael Taiwo    
Rachel Parks    
... David N. Lees    

Resumen

The presence of Escherichia coli in environmental waters is considered as evidence of faecal contamination and is therefore commonly used as an indicator in both water quality and food safety analysis. The long period of time between sample collection and obtaining results from existing culture based methods means that contamination events may already impact public health by the time they are detected. The adoption of molecular based methods for E. coli could significantly reduce the time to detection. A new quantitative real-time PCR (qPCR) assay was developed to detect the ybbW gene sequence, which was found to be 100% exclusive and inclusive (specific and sensitive) for E. coli and directly compared for its ability to quantify E. coli in environmental waters against colony counts, quantitative real-time NASBA (qNASBA) targeting clpB and qPCR targeting uidA. Of the 87 E. coli strains tested, 100% were found to be ybbW positive, 94.2% were culture positive, 100% were clpB positive and 98.9% were uidA positive. The qPCR assays had a linear range of quantification over several orders of magnitude, and had high amplification efficiencies when using single isolates as a template. This compared favourably with qNASBA which showed poor linearity and amplification efficiency. When the assays were applied to environmental water samples, qNASBA was unable to reliably quantify E. coli while both qPCR assays were capable of predicting E. coli concentrations in environmental waters. This study highlights the inability of qNASBA targeting mRNA to quantify E. coli in environmental waters, and presents the first E. coli qPCR assay with 100% target exclusivity. The application of a highly exclusive and inclusive qPCR assay has the potential to allow water quality managers to reliably and rapidly detect and quantify E. coli and therefore take appropriate measures to reduce the risk to public health posed by faecal contamination.

 Artículos similares

       
 
Giovanni Totaro, Felice De Nicola, Paola Spena, Giovangiuseppe Giusto, Monica Ciminello, Ilan Weissberg, Yehonatan Carmi, Daniel Arviv and Nir Lalazar    
This article discloses the activity developed in the framework of the research project ?GRID? aiming at the feasibility demonstration of a fiber optic sensing system (FOS), based on fiber Bragg gratings (FGB), embedded in the ribs of a conical grid struc... ver más
Revista: Aerospace

 
Akhmad Adi Sulianto, Ilham Putra Adiyaksa, Yusuf Wibisono, Elena Khan, Aleksei Ivanov, Aleksandr Drannikov, Kadir Ozaltin and Antonio Di Martino    
Here, we describe and assess a method for reusing specific food waste to make hydrogels, which can be employed to improve the efficacy of agrochemicals and water. It represents an approach for tackling current challenges, such as food waste, water manage... ver más

 
Jin-Hyo Kim and Sang-Min Sung    
Unmanned aerial vehicle (UAV) photogrammetry is an emerging means of acquiring high-precision rapid spatial information and data because it is cost-effective and highly efficient. However, securing uniform quality in the results of UAV photogrammetry is ... ver más
Revista: Applied Sciences

 
Jian Wang, Ze Chen, Linghao Li, Chuan Wang, Kangle Teng, Qiang He, Jiren Zhou, Shanshan Li, Weidong Cao, Xiuli Wang and Hongliang Wang    
Submersible tubular pumps are an ideal choice for pump stations that require high flow rates and low lift. These pumps combine the unique features of submersible motors with axial flow pump technology, making them highly efficient and cost-effective. The... ver más
Revista: Water

 
Aminur Rahman    
This study explores the potential of modified shrimp-based chitosan (MSC) as an innovative adsorbent for eliminating heavy metals (HMs) from contaminated water sources. The modifications encompassed various chemical treatments, surface functionalization,... ver más
Revista: Water