Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Sustainability  /  Vol: 11 Núm: 9 Par: May-1 (2019)  /  Artículo
ARTÍCULO
TITULO

Modeling Soil Nitrogen Content in South Patagonia across a Climate Gradient, Vegetation Type, and Grazing

Resumen

Soil total nitrogen (N) stock in rangelands, shrublands, and forests support key ecological functions such as the capacity of the land to sustain plant and animal productivity and ecosystem services. The objective of this study was to model soil total N stocks and soil C/N ratio from 0–30 cm depth across the region using freely accessible information on topography, climate, and vegetation with a view to establishing a baseline against which sustainable land management practices can be evaluated in Southern Patagonia. We used stepwise multiple regression to determine which independent variables best explained soil total N variation across the landscape in Southern Patagonia. We then used multiple regression models to upscale and produce maps of soil total N and C/N across the Santa Cruz province. Soil total N stock to 30 cm ranged from 0.13 to 2.21 kg N m−2, and soil C/N ratios ranged from 4.5 to 26.8. The model for variation of soil total N stock explained 88% of the variance on the data and the most powerful predictor variables were: isothermality, elevation, and vegetation cover (normalized difference vegetation index (NDVI)). Soil total N and soil C/N ratios were allocated to three categories (low, medium, high) and these three levels were used to map the variation of soil total N and soil C/N ratios across Southern Patagonia. The results demonstrate that soil total N decreases as desertification increases, probably due to erosional processes, and that soil C/N is lower at low temperatures and increased with increasing precipitation. Soil total N and soil C/N ratios are critical variables that determine system capacity for productivity, especially the provisioning ecosystem services, and can serve as baselines against which efforts to adopt more sustainable land management practices in Patagonia can be assessed.

 Artículos similares

       
 
M.H.J.P. Gunarathna, Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii and M.K.N. Kumari    
Poor data availability on soil hydraulic properties in tropical regions hampers many studies, including crop and environmental modeling. The high cost and effort of measurement and the increasing demand for such data have driven researchers to search for... ver más
Revista: Water

 
Anthony A. Amori, Olufemi P. Abimbola, Trenton E. Franz, Daran Rudnick, Javed Iqbal and Haishun Yang    
Model calibration is essential for acceptable model performance and applications. The Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop simulation model that simulates maize growth as a function of crop and fiel... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water