Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Numerical modeling of the simple concrete with finite elements by means of the plasticity theory and yielding function of Hu and Schnobrich.

Luis Rodríguez    
Dorian Linero    

Resumen

This article describes the formulation, implementation and validation of a constitutive model in the finite element method, which it represents the mechanical behavior of plain concrete subjected mainly to compression, considering the plane stress state and infinitesimal strain. This model is based on the general formulation of the theory of plasticity (Simó & Hughes 1998), considering a non-associated flow rule, where the plastic potential is defined by the failure criterion and von Mises and yield function corresponds to empirical approaches developed by Hu and Schnobrich (1989). An implicit algorithm of numerical integration was formulated to solve the nonlinear problem given by the material constitutive model. The constitutive model presented in this paper was implemented in the nonlinear analysis finite element program with open source HYPLAS (de Souza Neto et al. 2008) and the post-process was performed using GiD (CIMNE 2008). Finally we present the comparison of the structural response of panels subjected to forces contained in its plane tested experimentally by Kupfer and others (1969), against the numerical simulation using the proposed model. Also an application example of the proposed model to the beams simulation subjected to bending was presented.Rev. ing. constr. [online]. 2012, vol.27, n.3, pp. 129-144. ISSN 0718-5073.  http://dx.doi.org/10.4067/S0718-50732012000300002

 Artículos similares

       
 
Jingyao Ma, Hongyi Zhao and Dong-Sheng Jeng    
Suction anchors play a crucial role as marine supporting infrastructure within mooring systems. In engineering practice, the composite load comprising nonlinear waves and cyclic pull-out loads can have adverse effects on the seabed soil, posing a threat ... ver más

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Meen-Wah Gui and Ravendra P. Rajak    
Soil nailing is a prevalent and cost-effective technique employed to reinforce and enhance the stability of precarious natural or cut slopes; however, its application as a primary support system to prevent collapses or cave-ins during foundation excavati... ver más
Revista: Buildings

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences