Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water Research  /  Vol: 106 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Enhanced detection of pathogenic enteric viruses in coastal marine environment by concentration using methacrylate monolithic chromatographic supports paired with quantitative PCR

Mukundh N. Balasubramanian    
Nejc Racki    
José Gonçalves    
Katarina Kovac    
... Ion Gutiérrez-Aguirre    

Resumen

Currently, around 50% of the world's population lives in towns and cities within 100 km of the coast. Monitoring of viruses that are frequently present in contaminated coastal environments, such as rotavirus (RoV) and norovirus (NoV), which are also the major cause of human viral gastroenteritis, is essential to ensure the safe use of these water bodies. Since exposure to as few as 10?100 particles of RoV or NoV may induce gastrointestinal disease, there is a need to develop a rapid and sensitive diagnostic method for their detection in coastal water samples. In this study, we evaluate the application of methacrylate monolithic chromatographic columns, commercially available as convective interaction media (CIM®), to concentrate pathogenic enteric viruses from saline water samples prior to virus quantification by one-step reverse transcription quantitative PCR (RT-qPCR). Using RoV and NoV as model enteric viruses, we present our results on the most effective viral concentration conditions from saline water matrices using butyl (C4) hydrophobic interaction monolithic support (CIM® C4). C4 monolithic columns exhibit a good capacity to bind both RoV and NoV and both viruses can be eluted in a single step. Our protocol using a 1 ml C4 column enables processing of 400 ml saline water samples in less than 60 min and increases the sensitivity of RoV and NoV detection by approximately 50-fold and 10-fold respectively. The protocol was also scaled up using larger capacity 8 ml C4 columns to process 4000 ml of seawater samples with concentration factors of 300-fold for RoV and 40-fold for NoV, without any significant increase in processing time. Furthermore, C4 monolithic columns were adapted for field use in an on-site application of RoV concentration from seawater samples with performance equivalent to that of the reference laboratory setup. Overall, the results from successful deployment of CIM C4 columns for concentration of rotavirus and norovirus in seawater samples reiterate the utility of monolithic supports as efficient, scalable and modular preparative tools for processing environmental water samples to enhance viral detection using molecular methods.

 Artículos similares

       
 
Weiming Fan, Jiahui Yu and Zhaojie Ju    
Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer... ver más
Revista: Information

 
Yuntao Shi, Qi Luo, Meng Zhou, Wei Guo, Jie Li, Shuqin Li and Yu Ding    
Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that ar... ver más
Revista: Information

 
Changhong Liu, Jiawen Wen, Jinshan Huang, Weiren Lin, Bochun Wu, Ning Xie and Tao Zou    
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges ... ver más

 
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou    
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ... ver más
Revista: Applied Sciences

 
Yisu Zhang, Kai Wang, Wei Yue, Shuangkui Liu, Jieling Yu and Xin Ye    
Underwater spectral detection plays an important role in the study of the underwater environment, ecology, oceanography, and environmental monitoring. A kind of underwater spectral radiometer that can observe the distribution of underwater spectral radia... ver más
Revista: Applied Sciences