Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 8 Núm: 7 Par: July (2018)  /  Artículo
ARTÍCULO
TITULO

Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering Blade Length and Hub Height

Han Yang    
Jin Chen and Xiaoping Pang    

Resumen

In recent years, sites with low annual average wind speeds have begun to be considered for the development of new wind farms. The majority of design methods for a wind turbine operating at low wind speed is to increase the blade length or hub height compared to a wind turbine operating in high wind speed sites. The cost of the rotor and the tower is a considerable portion of the overall wind turbine cost. This study investigates a method to trade-off the blade length and hub height during the wind turbine optimization at low wind speeds. A cost and scaling model is implemented to evaluate the cost of energy. The procedure optimizes the blades? aero-structural performance considering blade length and the hub height simultaneously. The blade element momentum (BEM) code is used to evaluate blade aerodynamic performance and classical laminate theory (CLT) is applied to estimate the stiffness and mass per unit length of each blade section. The particle swarm optimization (PSO) algorithm is applied to determine the optimal wind turbine with the minimum cost of energy (COE). The results show that increasing rotor diameter is less efficient than increasing the hub height for a low wind speed turbine and the COE reduces 16.14% and 17.54% under two design schemes through the optimization.

 Artículos similares

       
 
Deokhee Won, Jihye Seo, Osoon Kwon, Hae-Young Park and Hyoun Kang    
The foundations of offshore wind power can be classified as floating, tripod, jacket, monopile, or gravity-based, depending on the support type. In the case of tripod- and jacket-type supports, the structures require precise construction. There are two m... ver más

 
Mingsheng Chen, Lenan Yang, Xinghan Sun, Jin Pan, Kai Zhang, Lin Lin, Qihao Yun and Ziwen Chen    
Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpoo... ver más

 
Rafael Pacheco-Blazquez, Julio Garcia-Espinosa, Daniel Di Capua and Andres Pastor Sanchez    
This paper delves into the application of digital twin monitoring techniques for enhancing offshore floating wind turbine performance, with a detailed case study that uses open-source digital twin software. We explore the practical implementation of digi... ver más

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Tianhao Wang, Hongying Meng, Rui Qin, Fan Zhang and Asoke Kumar Nandi    
Wind turbines are a crucial part of renewable energy generation, and their reliable and efficient operation is paramount in ensuring clean energy availability. However, the bearings in wind turbines are subjected to high stress and loads, resulting in fa... ver más
Revista: Applied Sciences