Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Numerical Analysis of an Industrial-Scale Steam Methane Reformer

Chun-Lang Yeh    

Resumen

A steam reformer of a hydrogen plant is a device that supplies heat to convert the natural gas or liquid petroleum gas into hydrogen via catalysis. It has been often used in the petrochemical industry to produce hydrogen. Control of the catalyst tube temperature is a fundamental demand of the reformer design because the tube temperature must be maintained within a range that the tube has minor damage and the catalysts have a high activity to convert the natural gas or liquid petroleum gas into hydrogen. In this research, the effect of the burner on/off manners on the catalyst tube temperature and the hydrogen yield of an industrial-scale side-fired steam methane reformer is investigated. The aim is to seek a feasible burner on/off manner that has acceptable catalyst tube temperature and hydrogen yield, so as to improve the performance and service life of a steam methane reformer. It is found that when one group of burners is turned off, the outer surface temperatures of the tubes are decreased by about 94°C in average, the inner surface temperatures are decreased by about 54°C in average, and the hydrogen yields are decreased by about 4%. When two groups of burners are turned off, the outer surface temperatures of the tubes are decreased by about 175°C in average, the inner surface temperatures are decreased by about 106°C in average, and the hydrogen yields are decreased by about 7.9%. When three groups of burners are turned off, the outer surface temperatures of the tubes are decreased by about 251°C in average, the inner surface temperatures are decreased by about 151°C in average, and the hydrogen yields are decreased by about 11.4%. The catalyst tube temperatures and the hydrogen yields reduce to a greater extent in regions where burners are turned off. When the central groups of burners are turned off, the tube temperatures and the hydrogen yields have greater reductions. On the other hand, when the rear groups of burners are turned off, the tube temperatures and the hydrogen yields have lower reductions.

 Artículos similares

       
 
Rupali Sarmah, Troyee Tanu Dutta and K. Seshagiri Rao    
Revista: Infrastructures

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Iurii Vakaliuk, Silke Scheerer and Manfred Curbach    
In the case of solid slabs made from reinforced concrete that are usually subjected to bending, large areas of the structure are stressed well below their load-bearing capacity or remain stress-free. Contrary to this are shell structures, which can bridg... ver más
Revista: Applied Sciences

 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences

 
Young-Cheol Kim, Dong-Hyeop Kim and Sang-Woo Kim    
To achieve the commercialization of electric vertical takeoff and landing (eVTOL) aircrafts, which have recently garnered attention as the next-generation means of transportation, objective certification based on rigorous procedures is essential. With th... ver más
Revista: Aerospace