Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Life Cycle Emissions and Cost Study of Light Duty Vehicles

Panos Prevedouros    
Lambros Mitropoulos    

Resumen

The growth of vehicle sales and use world-wide requires the consumption of significant quantities of energy and materials. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. More sustainable urban transportation can be achieved in the short term by promoting policies that increase vehicle occupancy. In the intermediate term, more sustainable urban transportation can be achieved by increasing the share of hybrid vehicles in traffic. In the long term, more sustainable urban transportation can be achieved with the widespread use of electric vehicles. A sensitivity analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, and the pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and would favor the variable cost of hybrid vehicles.

 Artículos similares

       
 
Filippo Cucinotta, Emmanuele Barberi and Fabio Salmeri    
The naval sector holds paramount importance for the global economy, yet it entails significant environmental impacts throughout the entire life cycle of ships. This review explores the application of life-cycle assessment (LCA) in the naval sector, a met... ver más

 
Hye-In Ho, Chae-Hong Park, Kyeong-Eun Yoo, Nan-Young Kim and Soon-Jin Hwang    
Eutrophic freshwater ecosystems are vulnerable to toxin-producing cyanobacteria growth or harmful algal blooms. Cyanobacteria belonging to the Nostocales order form akinetes that are similar to the seeds of vascular plants, which are resting cells surrou... ver más
Revista: Water

 
Yunxia Lu, Hao An, Chao Li and Changmin Liu    
The potential environmental impact and increased operational costs associated with the upgrading and renovation of sewage treatment plants are acknowledged. This study employs the upgrading and expansion project of a municipal sewage plant in Dongguan Ci... ver más
Revista: Water

 
Josephine Vaughan, Rebecca Evans and Willy Sher    
Accounting for the embodied carbon in construction materials and calculating the carbon footprint of entire construction projects in life-cycle assessments is a rapidly developing area in the construction industry. Carbon emission accounting relies on in... ver más
Revista: Buildings

 
Lukas Hausberger, Jounes Lutterbach and Florian Gschösser    
Previous studies of road or railway infrastructures have shown that traffic emissions outweigh the environmental impacts of the product stage and construction stage over the entire life cycle. Traffic usage is therefore the main emitter over the life cyc... ver más
Revista: Buildings