Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 7 (2024)  /  Artículo
ARTÍCULO
TITULO

An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data

Jiarui Xia and Yongshou Dai    

Resumen

Ground roll noise suppression is a crucial step in processing deep pre-stack seismic data. Recently, supervised deep learning methods have gained popularity in this field due to their ability to adaptively learn and extract powerful features. However, these methods rely on a large amount of clean seismic records without ground roll noise as reference labels. Unfortunately, generating high-quality and realistic clean seismic records for training remains a challenge. To tackle this problem, an unsupervised learning method called WPI-SD (wavelet prior information for deep learning in seismic data) is proposed for ground roll noise suppression in deep pre-stack seismic data. This approach takes into account the distinct temporal, lateral, and frequency characteristics that differentiate ground roll noise from real reflected waves in deep pre-stack seismic records. By designing a ground roll suppression loss function, the deep learning network can learn the specific distribution characteristics of real reflected waves within seismic records containing ground roll noise, even without labeled data. This enables the extraction of effective reflection signals and subsequent suppression of ground roll noise. Applied to actual seismic data processing, this method effectively mitigates ground roll noise while preserving valuable reflection signals, proving its practical significance.

 Artículos similares

       
 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms