Resumen
The exhaust tailpipe of a certain type of tractor was improved from the perspective of bionics, and bionic triangular convex texture was added to the inner surface of the exhaust tailpipe. The bionic tailpipe was proposed to improve noise reduction performance without changing the overall size parameters of the prototype tailpipe. Acoustics simulation software was used to predict the aeroacoustics noise and transmission loss of the exhaust tailpipe. Bionic exhaust tailpipes with triangular textures of different numbers of circumferential columns, height, and top angles were analyzed to study the noise reduction performance. The results showed that the proposed bionic exhaust tailpipes with triangular convex textures reduced the total sound pressure level and improved the transmission loss of the prototype exhaust tailpipe. To increase the transmission loss, a genetic algorithms (GA) optimized back-propagation neural network (BP) was used to optimize the bionic triangular convex texture parameters. By studying the aerodynamic noise reduction mechanism of bionic tailpipes, the research suggested that a secondary vortex appeared near the bionic texture and reduced aerodynamic drag and aeroacoustics noise. In addition, the sound pressure level amplitude nephogram, velocity vector nephogram, and velocity amplitude nephogram of the exhaust tailpipes were analyzed to study the vibration noise reduction mechanism of the bionic tailpipes. Then, the noise reduction performance was experimentally evaluated. The experimental results of the bionics exhaust tailpipes with triangular convex textures were analyzed and compared to that of the prototype tailpipe. The results demonstrated that the bionic exhaust tailpipes were able to attenuate noise.