Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

A Tidal Hydrodynamic Model for Cook Inlet, Alaska, to Support Tidal Energy Resource Characterization

Taiping Wang and Zhaoqing Yang    

Resumen

Cook Inlet in Alaska has been identified as a prime site in the U.S. for potential tidal energy development, because of its enormous tidal power potential that accounts for nearly one-third of the national total. As one important step to facilitate tidal energy development, a tidal hydrodynamic model based on the unstructured-grid, finite-volume community ocean model (FVCOM) was developed for Cook Inlet to characterize the tidal stream energy resource. The model has a grid resolution that varies from about 1000 m at the open boundary to 100?300 m inside the Inlet. Extensive model validation was achieved by comparing model predictions with field observations for tidal elevation and velocity at various locations in Cook Inlet. The error statistics confirmed the model performs reasonably well in capturing the tidal dynamics in the system, e.g., R2 > 0.98 for tidal elevation and generally > 0.9 for velocity. Model results suggest that tides in Cook Inlet evolve from progressive waves at the entrance to standing waves at the upper Inlet, and that semi-diurnal tidal constituents are amplified more rapidly than diurnal constituents. The model output was used to identify hotspots that have high energy potential and warrant additional velocity and turbulence measurements such as East Foreland, where averaged power density exceeds 5 kw/m2. Lastly, a tidal energy extraction simulation was conducted for a hypothetical turbine farm configuration at the Forelands cross section to evaluate tidal energy extraction and resulting changes in far-field hydrodynamics.

 Artículos similares

       
 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Yi Wang, Bin Guo, Fengmei Jing and Yunlei Mei    
In order to gain a more comprehensive understanding of the influence of winglets on the hydrodynamic performance and flow field characteristics of tidal current energy turbines, two different shapes of winglets are designed, and numerical simulation resu... ver más

 
Muyu Zhao, Ying Chen and Jin Jiang    
The study of hydrodynamic characteristics of floating double-rotor horizontal axis tidal current turbines (FDHATTs) is of great significance for the development of tidal current energy. In this paper, the effect of roll motion on a FDHATT is investigated... ver más

 
Qian Zhang, Mingming Tang, Shuangfang Lu, Xueping Liu and Sichen Xiong    
Estuaries are important sediment facies in the fluvial-to-marine transition zone, are strongly controlled by dynamic interactions of tides, waves, and fluvial flows, and show various changes in depositional processes and sediment distribution. Deep inves... ver más

 
Eric E. Grossman, Babak Tehranirad, Cornelis M. Nederhoff, Sean C. Crosby, Andrew W. Stevens, Nathan R. Van Arendonk, Daniel J. Nowacki, Li H. Erikson and Patrick L. Barnard    
Extreme water-level recurrence estimates for a complex estuary using a high-resolution 2D model and a new method for estimating remotely generated sea level anomalies (SLAs) at the model boundary have been developed. The hydrodynamic model accurately res... ver más
Revista: Water