Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Infrastructures  /  Vol: 5 Par: 8 (2020)  /  Artículo
ARTÍCULO
TITULO

Accuracy Comparison of Aerial Lidar, Mobile-Terrestrial Lidar, and UAV Photogrammetric Capture Data Elevations over Different Terrain Types

Mandar Khanal    
Mahamudul Hasan    
Nikolaus Sterbentz    
Ryen Johnson and Jesse Weatherly    

Resumen

Lidar and other remotely sensed data such as UAV photogrammetric data capture are being collected and utilized for roadway design on an increasing basis. These methods are desirable over conventional survey due to their efficiency and cost-effectiveness over large areas. A high degree of relative accuracy is achievable through the establishment of survey control. In this case study, elevations (z-values) derived from mobile-terrestrial lidar, aerial lidar, and UAV photogrammetric capture collected with survey control were statistically compared to conventionally surveyed elevations. A cost comparison of the methods is also included. Each set of z-values corresponds to a discrete horizontal point originally part of the conventional survey, collected as cross-sections. These cross-sections were surveyed at three approximate tenth-mile sample locations along US-30 near Georgetown, Idaho. The cross-sections were collected as elevational accuracy verification, and each sample location was selected as an area where the mobile-terrestrial lidar in particular was expected to have more difficulty achieving accuracy off the road surface. Processing and analysis were performed in Esri ArcMap 10.6, and all data were obtained from the Idaho Transportation Department, District 5. Overall, the aerial lidar elevations were found to be closest to conventionally surveyed elevations; on road surface and level terrain, mobile-terrestrial and UAV photogrammetric capture elevations were closer to the conventionally measured elevations.

 Artículos similares

       
 
Yuan Guo, Jian Zhou, Xicheng Li, Youchen Tang and Zhicheng Lv    
High-definition (HD) maps serve as crucial infrastructure for autonomous driving technology, facilitating vehicles in positioning, environmental perception, and motion planning without being affected by weather changes or sensor-visibility limitations. M... ver más

 
Florin Leon, Marius Gavrilescu, Sabina-Adriana Floria and Alina Adriana Minea    
This paper proposes a classification methodology aimed at identifying correlations between job ad requirements and transversal skill sets, with a focus on predicting the necessary skills for individual job descriptions using a deep learning model. The ap... ver más
Revista: Information

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace

 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
Serge Riazanoff, Axel Corseaux, Clément Albinet, Peter A. Strobl, Carlos López-Vázquez, Peter L. Guth and Takeo Tadono    
In recent decades, an important number of regional and global digital elevation models (DEMs) have been released publicly. As a consequence, researchers need to choose between several of these models to perform their studies and to use these DEMs as thir... ver más