Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 16 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Treatment of Antihypertensive and Cardiovascular Drugs in Supercritical Water: An Experimental and Modeled Approach

Isabela M. Dias    
Lucas C. Mourão    
Guilherme B. M. De Souza    
Jose M. Abelleira-Pereira    
Julles M. Dos Santos-Junior    
Antônio C. D. De Freitas    
Lucio Cardozo-Filho    
Christian G. Alonso and Reginaldo Guirardello    

Resumen

Pharmaceutical pollutants are considered emerging contaminants, representing a significant concern to the ecosystem. Thus, this study reports on the degradation of antihypertensive and cardiovascular drugs (atenolol, captopril, propranolol hydrochloride, diosmin, hesperidin, losartan potassium, hydrochlorothiazide, and trimetazidine) present in simulated wastewater through applying the technology of oxidation using supercritical water (SCW). The operational parameters of the treatment process, particularly the feed flow rate, temperature, and concentration of H2O2, were assessed. A central composite design of experiments associated with differential evolution was employed in the optimization. Both liquid and gaseous phase products were submitted to physical?chemical characterization. As a result, the optimized conditions for the treatment were discovered to be a feed flow rate of 13.3 mL/min, a temperature of 600 °C, and a H2O2 oxidation coefficient of 0.65, corresponding to the oxygen stoichiometric coefficient in the carbon oxidation chemical reaction. Under optimal conditions, the total organic carbon (TOC) decreased from 332 to 25 mg/L (92.1%), and the pharmaceutical molecules underwent near-complete degradation. The physical?chemical parameters also met with the main environmental regulations for wastewater disposal. The compounds determined in the gaseous phase were CO2 (97.9%), H2 (1.3%), CH4 (0.3%), and CO (0.5%.). Additionally, a modeling thermodynamic equilibrium of the system was performed, based on the experimental data. The results revealed that SCW technology has a great potential to oxidize/degrade organic matter and can be applied to treat pharmaceutical pollutants.

 Artículos similares