Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Water  /  Vol: 16 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

A Multi-Strategy Improved Sooty Tern Optimization Algorithm for Concrete Dam Parameter Inversion

Lin Ma    
Fuheng Ma    
Wenhan Cao    
Benxing Lou    
Xiang Luo    
Qiang Li and Xiaoniao Hao    

Resumen

A original strategy for optimizing the inversion of concrete dam parameters based on the multi-strategy improved Sooty Tern Optimization algorithm (MSSTOA) is proposed to address the issues of low efficiency, low accuracy, and poor optimizing performance. First, computational strategies to improve the traditional Sooty tern algorithm, such as chaos mapping to improve the initial position of the population, a new nonlinear convergence factor, the LIMIT threshold method, and Gaussian perturbation to update the optimal individual position, are adopted to enhance its algorithmic optimization seeking ability. Then, the measured and finite element data are combined to create the optimization inversion fitness function. Based on the MSSTOA, the intelligent optimization inversion model is constructed, the inversion efficiency is improved by parallel strategy, and the optimal parameter inversion is searched. The inversion strategy is validated through test functions, hypothetical arithmetic examples, and concrete dam engineering examples and compared with the inversion results of the traditional STOA and other optimization algorithms. The results show that the MSSTOA is feasible and practical, the test function optimization results and computational time are better than the STOA and other algorithms, the example inversion of the elastic modulus is more accurate than the traditional STOA calculation, and the results of the MSSSTOA inversion are reasonable in the engineering example. Compared with other algorithms, the local extremes are skipped, and the time consumption is reduced by at least 48%. The finite element hydrostatic components calculated from the inversion results are well-fitted to the statistical model with minor errors. The intelligent inversion strategy has good application in concrete dam inverse analysis.

 Artículos similares