Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Speed Optimization in Bulk Carriers: A Weather-Sensitive Approach for Reducing Fuel Consumption

You-Chen Shih    
Yu-An Tzeng    
Chih-Wen Cheng and Chien-Hua Huang    

Resumen

The maritime industry faces the critical challenge of achieving net-zero greenhouse gas emissions by 2050, as mandated by the International Maritime Organization. This study introduces a novel speed optimization model, designed specifically for bulk carriers operating between two ports. Unlike conventional models that often assume static weather conditions, the proposed model incorporated variable weather conditions at different times of arrivals, as quantified by the Beaufort number (BN) and weather direction, for each leg of the voyage. Fuel consumption was estimated by applying regression to historical voyage data. This study employed a genetic algorithm (GA) to optimize vessel speed and thereby minimize fuel consumption. The model was tested by using different fuel consumption response curves relative to different BNs and weather directions. The results indicated that the proposed method could effectively reduce fuel consumption compared with the historical sailing mode by around 3%. The optimal speed recommendation indicated that the vessel should operate at a higher speed in circumstances associated with relatively low fuel consumption, such as lower BN and following sea conditions. Nonetheless, if it is possible to attain relatively low fuel consumption by adjusting the speed, the GA assesses the viability of this course of action. The study suggests that the predictive accuracy could be further enhanced by incorporating more granular, validated voyage data in future research.

 Artículos similares

       
 
Jianfeng Zhu, Guochen Huang, Maoguang Xu, Ming Liu, Bo Diao and Po Li    
Combined with the development trend of high speed generators and the high voltage of DC microgrids in high-power series hybrid aero propulsion system, a set of hybrid systems with a power of 200 kW, voltage of 540 V, and speed of 21,000 r/min is establis... ver más
Revista: Aerospace

 
Amr A. Abd El-Mageed, Ayoub Al-Hamadi, Samy Bakheet and Asmaa H. Abd El-Rahiem    
It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current?voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect par... ver más
Revista: Algorithms

 
Guido Saccone and Marco Marini    
In the framework of the ?Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation? project, pursued by a consortium of European government and academic institutions, coordinated by Politecnico di Tor... ver más
Revista: Aerospace

 
Ping Xiao and Haiyan Wang    
In response to the optimal operation of ocean container ships, this paper presents a two-level planning model that takes into account carbon tax policies. This model translates the CO2 emissions of ships into carbon tax costs and aims to minimize the ove... ver más
Revista: Applied Sciences

 
Mukhtar Fatihu Hamza    
Due to increased complexity and interactions between various subsystems, higher-order MIMO systems present difficulties in terms of stability and control performance. This study effort provides a novel, all-encompassing method for creating a decentralize... ver más
Revista: Algorithms