Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Fault-Diagnosis Method for Rotating Machinery Based on SVMD Entropy and Machine Learning

Lijun Zhang    
Yuejian Zhang and Guangfeng Li    

Resumen

Rolling bearings and gears are important components of rotating machinery. Their operating condition affects the operation of the equipment. Fault in the accessory directly leads to equipment downtime or a series of adverse reactions in the system, which brings enormous pecuniary loss to the institution. Hence, it is of great significance to detect the operating status of rolling bearings and gears for fault diagnosis. At present, the vibration method is considered to be the most common method for fault diagnosis, a method that analyzes the equipment by collecting vibration signals. However, rotating-machinery fault diagnosis is challenging due to the need to select effective fault feature vectors, use appropriate machine-learning classification methods, and achieve accurate fault diagnosis. To solve this problem, this paper illustrates a new fault-diagnosis method combining successive variational-mode decomposition (SVMD) entropy values and machine learning. First, the simulation signal and the real fault signal are used to analyze and compare the variational-mode decomposition (VMD) and SVMD methods. The comparison results prove that SVMD can be a useful method for fault diagnosis. Then, these two methods are utilized to extract the energy entropy and fuzzy entropy of the gearbox dataset of Southeast University (SEU), respectively. The feature vector and multiple machine-learning classification models are constructed for failure-mode identification. The experimental-analysis results successfully verify the effectiveness of the combined SVMD entropy and machine-learning approach for rotating-machinery fault diagnosis.

 Artículos similares

       
 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences

 
Yong Liu, Jialin Zhou, Dong Zhang, Shaoyu Wei, Mingshun Yang and Xinqin Gao    
To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based on self-attention improvement of conditional tabular generativ... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Wenhao Sun, Yidong Zou, Yunhe Wang, Boyi Xiao, Haichuan Zhang and Zhihuai Xiao    
In the practical production environment, the complexity and variability of hydroelectric units often result in a need for more fault data, leading to inadequate accuracy in fault identification for data-driven intelligent diagnostic models. To address th... ver más
Revista: Water