Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Dynamics and Distribution of Marine Synechococcus Abundance and Genotypes during Seasonal Hypoxia in a Coastal Marine Ranch

Guihao Li    
Qinqin Song    
Pengfei Zheng    
Xiaoli Zhang    
Songbao Zou    
Yanfang Li    
Xuelu Gao    
Zhao Zhao and Jun Gong    

Resumen

Marine Synechococcus are an ecologically important picocyanobacterial group widely distributed in various oceanic environments. Little is known about the dynamics and distribution of Synechococcus abundance and genotypes during seasonal hypoxia in coastal zones. In this study, an investigation was conducted in a coastal marine ranch along two transects in Muping, Yantai, where hypoxic events (defined here as the dissolved oxygen concentration <3 mg L-1) occurred in the summer of 2015. The hypoxia occurred in the bottom waters from late July and persisted until late August. It was confined at nearshore stations of the two transects, one running across a coastal ranch and the other one outside. During this survey, cell abundance of Synechococcus was determined with flow cytometry, showing great variations ranging from 1 × 104 to 3.0 × 105 cells mL-1, and a bloom of Synechococcus occurred when stratification disappeared and hypoxia faded out outside the ranch. Regression analysis indicated that dissolved oxygen, pH, and inorganic nutrients were the most important abiotic factors in explaining the variation in Synechococcus cell abundance. Diverse genotypes (mostly belonged to the sub-clusters 5.1 and 5.2) were detected using clone library sequencing and terminal restriction fragment length polymorphism analysis of the 16S?23S rRNA internal transcribed spacer region. The richness of genotypes was significantly related to salinity, temperature, silicate, and pH, but not dissolved oxygen. Two environmental factors, temperature and salinity, collectively explained 17% of the variation in Synechococcus genotype assemblage. With the changes in population composition in diverse genotypes, the Synechococcus assemblages survived in the coastal hypoxia event and thrived when hypoxia faded out.

 Artículos similares

       
 
Martynas Drazdauskas and Sergejus Lebedevas    
The capability of operational marine diesel engines to adapt to renewable and low-carbon fuels is considered one of the most influential methods for decarbonizing maritime transport. In the medium and long term, ammonia is positively valued among renewab... ver más

 
Shizhen Gao, Zhihua Fan, Jie Mao, Minhui Zheng and Junyi Yang    
It is important to marine ecology research that plankton samples are collected without damage, especially for time series samples. Usually, most fixed-point plankton samplers are made using a pump with paddle blades in order to increase the flow rate. Bu... ver más

 
Dongeun Kim and Yoon Hyeok Bae    
Generally, new and renewable energy systems generate electricity by installing and operating multiple modules simultaneously. In the Republic of Korea, recent studies and developments have focused on asymmetric wave energy converters (hereafter referred ... ver más

 
Jean-Marc Guarini and Jennifer Coston-Guarini    
In their 2023 book, ?The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy?, Lubchenko and Haugan invoked alternate stable (AS) states marginally as an undesired consequence of sources of disturbance on populations, communities an... ver más

 
Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon    
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations we... ver más