Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 21 (2022)  /  Artículo
ARTÍCULO
TITULO

A Novel Deep Reinforcement Learning Approach for Task Offloading in MEC Systems

Xiaowei Liu    
Shuwen Jiang and Yi Wu    

Resumen

With the internet developing rapidly, mobile edge computing (MEC) has been proposed to offer computational capabilities to tackle the high latency caused by innumerable data and applications. Due to limited computing resources, the innovation of computation offloading technology for an MEC system remains challenging, and can lead to transmission delays and energy consumption. This paper focuses on a task-offloading scheme for an MEC-based system where each mobile device is an independent agent and responsible for making a schedule based on delay-sensitive tasks. Nevertheless, the time-varying network dynamics and the heterogeneous features of real-time data tasks make it difficult to find an optimal solution for task offloading. Existing centralized-based or distributed-based algorithms require huge computational resources for complex problems. To address the above problem, we design a novel deep reinforcement learning (DRL)-based approach by using a parameterized indexed value function for value estimation. Additionally, the task-offloading problem is simulated as a Markov decision process (MDP) and our aim is to reduce the total delay of data processing. Experimental results have shown that our algorithm significantly promotes the users? offloading performance over traditional methods.

 Artículos similares

       
 
Tomasz Walczyna and Zbigniew Piotrowski    
The proliferation of ?Deep fake? technologies, particularly those facilitating face-swapping in images or videos, poses significant challenges and opportunities in digital media manipulation. Despite considerable advancements, existing methodologies ofte... ver más
Revista: Applied Sciences

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv    
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ... ver más
Revista: Applied Sciences

 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion... ver más
Revista: Applied Sciences