Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Infrastructures  /  Vol: 6 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Construction and Performance Monitoring of Innovative Ultra-High-Performance Concrete Bridge

Haena Kim    
Byungkyu Moon    
Xinyu Hu    
Hosin (David) Lee    
Gum-Sung Ryu    
Kyung-Taek Koh    
Changbin Joh    
Byung-Suk Kim and Brian Keierleber    

Resumen

The application of Ultra-High-Performance Concrete (UHPC) materials in rehabilitating bridges and constructing primary bridge components is increasing rapidly across the world because of their superior strength and durability characteristics when compared to regular concretes. However, there have been few new bridges constructed using UHPC materials with regular formworks, ready-mix trucks, and construction equipment. This paper presents a comprehensive report encompassing the design, construction, and performance monitoring of a new bridge constructed in Iowa using a unique UHPC technology that includes steel fibers of two different lengths embedded in the concrete. By using optimized lengths of steel fibers, both the tensile strength and the toughness were increased. The UHPC material was produced with local cement and aggregates in the US using typical ready-mix concrete equipment. This paper discusses the experience gained from the design and construction process including mix design, batching, delivery of steel fibers to the ready-mix concrete batch unit, and post-tensioning of precast slabs at the jobsite. For four years after construction, the joints of the bridge decks were monitored using strain sensors mounted on both sides of the deck joints. The strain values were quite similar between the two sides of each joint, indicating a good load transfer between precast bridge girders. A bridge was successfully constructed using a unique UHPC technology incorporating two different lengths of steel fibers and utilizing local cement and aggregates and a ready-mix truck, and has been performing satisfactorily with a good load transfer across post-tensioned precast girder joints.

 Artículos similares

       
 
Kunda Chamatete and Çaglar Yalçinkaya    
Three-dimensional concrete printing (3DCP) is of great interest to scientists and the construction industry to bring automation to structural engineering applications. However, studies on the thermal performance of three-dimensional printed concrete (3DP... ver más
Revista: Buildings

 
Juan Jin, Seunghan Kim and Jiwon Moon    
Korean forests are highly vulnerable to forest fires, which can severely damage property and human life. This necessitates the establishment of a rapid response system and the construction of firebreaks to prevent the spread of fires and protect key faci... ver más
Revista: Applied Sciences

 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Arman Hatami Shirkouh, Farshad Meftahi, Ahmed Soliman, Stéphane Godbout and Joahnn Palacios    
The increasing scarcity of virgin natural resources and the need for sustainable waste management in densely populated urban areas have heightened the importance of developing new recycling technologies. One promising approach involves recycling agricult... ver más
Revista: Applied Sciences