Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Algorithms  /  Vol: 17 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Following the Writer?s Path to the Dynamically Coalescing Reactive Chains Design Pattern

João Paulo Oliveira Marum    
H. Conrad Cunningham    
J. Adam Jones and Yi Liu    

Resumen

Two recent studies addressed the problem of reducing transitional turbulence in applications developed in C# on .NET. The first study investigated this problem in desktop and Web GUI applications and the second in virtual and augmented reality applications using the Unity3D game engine. The studies used similar solution approaches, but both were somewhat embedded in the details of their applications and implementation platforms. This paper examines these two families of applications and seeks to extract the common aspects of their problem definitions and solution approaches and codify the problem-solution pair as a new software design pattern. To do so, the paper adopts Wellhausen and Fiesser?s writer?s path methodology and follows it systematically to discover and write the pattern, recording the reasoning at each step. To evaluate the pattern, the paper applies it to an arbitrary C#/.NET GUI application. The resulting design pattern is named Dynamically Coalescing Reactive Chains (DCRC). It enables the approach to transitional turbulence reduction to be reused across a range of related applications, languages, and user interface technologies. The detailed example of the writer?s path can assist future pattern writers in navigating through the complications and subtleties of the pattern-writing process.

 Artículos similares

       
 
Weiwei Qi, Mingbo Tong, Qi Wang, Wei Song and Hunan Ying    
In this research, the design of a robust curved-line path-following control system for fixed-wing unmanned aerial vehicles (FWUAVs) affected by uncertainties on the latitude plane is studied. This is undertaken to enhance closed-loop system robustness un... ver más
Revista: Applied Sciences

 
Yu Cao, Kan Ni, Xiongwen Jiang, Taiga Kuroiwa, Haohao Zhang, Takahiro Kawaguchi, Seiji Hashimoto and Wei Jiang    
The potential of autonomous driving technology to revolutionize the transportation industry has attracted significant attention. Path following, a fundamental task in autonomous driving, involves accurately and safely guiding a vehicle along a specified ... ver más
Revista: Applied Sciences

 
Mingyu Fu and Qiusu Wang    
On account of the external disturbances and difficult maneuverability of a hovercraft, this paper devises a safety-guaranteed, robust, nonlinear, path-following control strategy of a hovercraft targeted for unknown dynamics, unavailable velocity, and unk... ver más

 
Weixiang Zhou, Mengyan Ning, Jian Ren and Jiqiang Xu    
An effective path-following controller is a guarantee for stable sailing of underactuated unmanned surface vehicles (USVs). This paper proposes an event-triggered robust control approach considering an unknown model nonlinearity, external disturbance, an... ver más

 
Yuchao Wang, Yinsong Qu, Shiquan Zhao, Ricardo Cajo and Huixuan Fu    
In this paper, a solution to the problem of following a curved path for underactuated unmanned surface vehicles (USVs) with unknown sideslip angle and model uncertainties is studied. A novel smooth sliding mode control (SSMC) based on a finite-time exten... ver más