Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Experimental and Simulation Investigation on the Kinetic Energy Dissipation Rate of a Fixed Spray-Plate Sprinkler

Yisheng Zhang    
Bin Sun    
Hongyuan Fang    
Delan Zhu    
Lingxia Yang and Zhansong Li    

Resumen

Sprinkler irrigation is promoted due to its remarkable advantages in water conservation, but the high energy consumption limits its development in a situation of energy scarcity. In order to determine the energy consumption of a fixed spray-plate sprinkler (FSPS), its discharge and initial trajectory velocity were investigated using a particle image velocimetry (PIV) technique and computational fluid dynamics (CFD) analyses. A nozzle diameter of 4.76 mm was used under windless conditions. Overall, good agreement between simulation results and experimental values was obtained. On the premise that the simulation method produced high accuracy, a series of simulations was performed with different nozzle diameters. The water distribution pattern, stream trajectory velocity and kinetic energy dissipation were analyzed. The results show that the jet produced at the nozzle is split by grooves after it hits the plate, with separation occurring earlier with decreasing nozzle diameter. The area of the flow cross-section of the outlet is mainly influenced by nozzle diameter rather than working pressure. The initial trajectory velocity of the grooves increases logarithmically with increasing working pressure. A high working pressure may not cause large kinetic energy dissipation. The dissipation rate of the FSPS ranged from 28.01?50.97%, i.e., a large kinetic energy rate was observed. To reduce this energy dissipation and improve water use efficiency, the structure of the FSPS should be optimized in further research.

 Artículos similares

       
 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Heng Liu, Wenzhi Xu, Quanchun Yuan, Jin Zeng, Xiaohui Lei and Xiaolan Lyu    
In addressing the challenges of high energy consumption and low efficiency in fertilization borehole drilling for clayey soils in southern orchards, this study utilizes the Discrete Element Method to establish a simulation model for clayey soils. Through... ver más
Revista: Applied Sciences

 
Yaoyu Yan, Futang Xing, Haonan Gao and Dan Mei    
The cable room, located at the base of the ring main unit, is prone to water vapor due to its proximity to damp cable holes and its relatively enclosed structure. This may penetrate internally and ultimately affect operational safety. Therefore, a dehumi... ver más
Revista: Applied Sciences

 
Zhen Xu, Lianjiang Xu, Junfeng Sun, Meihong Liu, Taohong Liao and Xiangping Hu    
Flexible support cylindrical gas film seals (CGFSs) adapt well to rotor whirling and have a good gas lubrication effect during thermal deformation. However, when a CGFS operates under the ?three high? (high interface slip speed, high-pressure differentia... ver más
Revista: Aerospace

 
Gao Huang, Chengjun Qiu, Mengtian Song, Wei Qu, Yuan Zhuang, Kaixuan Chen, Kaijie Huang, Jiaqi Gao, Jianfeng Hao and Huili Hao    
Cavitation is typically observed when high-pressure submerged water jets are used. A composite nozzle, based on an organ pipe, can increase shear stress on the incoming flow, significantly enhancing cavitation performance by stacking Helmholtz cavities i... ver más
Revista: Water