Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Effects of Propanol on the Performance and Emissions of a Dual-Fuel Industrial Diesel Engine

Arkadiusz Jamrozik    
Wojciech Tutak and Karol Grab-Rogalinski    

Resumen

The search for alternative fuels that can limit the use of traditional fossil fuels to power internal combustion engines is one of the main tasks faced by both the modern automotive industry and the modern energy industry. This paper presents experimental tests of a compression ignition engine, in which the conventional fuel, i.e., diesel, was partially replaced with propyl alcohol, i.e., a renewable biofuel. Studies on the co-combustion of diesel fuel with propanol were carried out, in which the energy share of alcohol varied from 0 to 65%. The research showed that an increase in the proportion of propanol, up to 30%, resulted in a significant increase in the rate of heat release and the rate of pressure increase in the cylinder of a compression-ignition engine. Increasing the alcohol content to 65% resulted in an increase in the ignition delay time and significantly shortened the duration of combustion. During the combustion of diesel fuel with a 50% propanol share, the engine was characterized by maximum efficiency, higher than diesel fuel combustion by 5.5%. The addition of propanol caused a slight deterioration of the combustion stability determined by the coefficient of variation for IMEP. The study of engine exhaust emissions has shown that the combustion of diesel fuel with a small proportion of propanol, up to 30%, causes an increase in nitrogen oxide emissions, while up to 50% contributes to a decrease in HC emissions. The increased share of alcohol contributed to a significant decrease in the emissions of both carbon monoxide and carbon dioxide, and caused a significant reduction in the concentration of soot in the exhaust of the compression-ignition engine.

Palabras claves

 Artículos similares

       
 
Zijian Zhang and Ziqi Jiang    
Detonation initiation is a prerequisite to normal operations of an oblique detonation engine (ODE), and initiation-assistant measures are imperative in cases of initiation failure that occur in a length-limited combustor under wide-range flight condition... ver más
Revista: Aerospace

 
Yang Wang, Cheng Tian and Pengfei Yang    
Ozone addition presents a promising approach for optimizing and regulating both combustion and ignition mechanisms. In Rotating Detonation Engines (RDEs), investigating the impact of ozone addition is particularly important due to the fact of their uniqu... ver más
Revista: Aerospace

 
Houreya Aldarrai, Dhabya Alsuwaidi, Beenish Khan, Haoyang Xu and Elham Tolouei    
As part of the United Arab Emirates? and the world?s aviation goal of reaching net-zero greenhouse gas emissions by 2050, this paper studied the potential of successfully implementing both biofuel ?drop-in? alternatives and aerodynamically efficient conf... ver más
Revista: Aerospace

 
Dongsuk Kim, Majid Asli and Klaus Höschler    
As the issue of pollutant emissions from aviation propulsion escalates, research into alternative powertrains is gaining momentum. Two promising technologies are the Hybrid Electric Propulsion System (HEPS) and Pressure Gain Combustion (PGC). HEPS is exp... ver más
Revista: Aerospace

 
Changhao Lu, Enzhe Song, Congcong Xu, Zuo Ni, Xiyu Yang and Quan Dong    
Stable ultra-lean combustion is an effective way for natural gas engines to reduce NOx emissions, but it also has higher requirements for ignition stability. The passive pre-chamber can effectively increase the ignition energy and extend the lean-burn li... ver más