Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 17 (2020)  /  Artículo
ARTÍCULO
TITULO

Design and Performance Analysis for the Low-Power Holding Mechanism of the All-Electric Subsea Gate Valve Actuator

Honghai Wang    
Peng Jia    
Liquan Wang    
Feihong Yun    
Gang Wang    
Aiguo Zhang    
Min Xu and Xiangyu Wang    

Resumen

The all-electric subsea gate valve actuator is one of the critical components of the all-electric subsea production control system. To bridge the gap of the low-power holding mechanism in the all-electric subsea gate valve actuator of the subsea production system, minimize the power consumption and cable number for control and improve the open-position keeping performance of all-electric subsea gate valve actuator, this paper proposed a novel low-power holding mechanism for the all-electric subsea gate valve actuator which can be applied to all-electric subsea gate valve actuators with various valve sizes and process pressure ratings. The proposed low-power holding mechanism uses an electromagnet as a driving element, combines the spiral transmission and the cam-like transmission, and only requires a holding force of approximately 2?7% of the maximum load of the closing spring to keep the valve open. The proposed low-power holding mechanism converts the axial force of the closing spring into the circumferential force, which substantially reduces the output force required for the driving element of the low-power holding mechanism and the number of the actuator?s control cables. Analytic models are created for the lockable maximum load of the closing spring and the permissible stroke of the locking tab with regard to the design variables. The parameter effects and the corresponding sensitivities are discussed by numerical analysis. The design parameters and the lockable maximum load of the closing spring of the low-power holding mechanism are obtained.

 Artículos similares

       
 
Jose M. Bernal-de-Lázaro     Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste... ver más

 
Yannian Yang, Yu Liang, Stefan Pröbsting, Pengyu Li, Haoyu Zhang, Benxu Huang, Chaofan Liu, Hailong Pei and Bernd R. Noack    
In the near future, urban air mobility (UAM) will let an old dream of human society come true: affordable and fast air transportation for almost everyone. Among the various existing designs, the multicopter configuration best combines the advantages of c... ver más
Revista: Aerospace

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang and Xi Liang    
Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures.... ver más
Revista: Aerospace

 
Zhixiong Chen, Tianshu Cao, Pengjiao Wang and Junhao Feng    
Wireless and power line communication hybrid relay technology can realize complementary advantages and comprehensively improve the communication coverage and performance of power Internet of Things. In order to study the mechanism of the physical layer a... ver más
Revista: Applied Sciences