Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

A Transfer Learning and Optimized CNN Based Maritime Vessel Classification System

Mostafa Hamdy Salem    
Yujian Li    
Zhaoying Liu and Ahmed M. AbdelTawab    

Resumen

Deep learning has been used to improve intelligent transportation systems (ITS) by classifying ship targets in interior waterways. Researchers have created numerous classification methods, but they have low accuracy and misclassify other ship targets. As a result, more research into ship classification is required to avoid inland waterway collisions. We present a new convolutional neural network classification method for inland waterways that can classify the five major ship types: cargo, military, carrier, cruise, and tanker. This method can also be used for other ship classes. The proposed method consists of four phases for the boosting of classification accuracy for Intelligent Transport Systems (ITS) based on convolutional neural networks (CNNs); efficient augmentation method, the hyper-parameter optimization (HPO) technique for optimum CNN model parameter selection, transfer learning, and ensemble learning are suggested. All experiments used Kaggle?s public Game of Deep Learning Ship dataset. In addition, the proposed ship classification achieved 98.38% detection rates and 97.43% F1 scores. Our suggested classification technique was also evaluated on the MARVEL dataset. This dataset includes 10,000 image samples for each class and 26 types of ships for generalization. The suggested method also delivered an excellent performance compared to other algorithms, with performance metrics with an accuracy of 97.04%, a precision of 96.1%, a recall of 95.92%, a specificity of 96.55%, and a 96.31% F1 score.

 Artículos similares

       
 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Jiwun Yoon, Sang-Yong Lee and Ji-Yong Lee    
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one?s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artif... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Md Easin Hasan and Amy Wagler    
Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial intelligence techniques for Alzheimer?s disease (AD)- and dementia-stage prediction, even though it is difficult to anticipate the precise stage of dementia and AD.... ver más
Revista: AI

 
Jiahao Fan and Weijun Pan    
In recent years, automatic speech recognition (ASR) technology has improved significantly. However, the training process for an ASR model is complex, involving large amounts of data and a large number of algorithms. The task of training a new model for a... ver más
Revista: Aerospace