Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Simulation Study and Engineering Application of Weakening Mine Pressure Behavior in Stope through Ground Fracturing Thick and Hard Rock Strata

Zhu Li    
Chengen Qi    
Rui Gao    
Bin Yu    
Yiran Zhu    
Hong Zhang and Jingyu Zhang    

Resumen

Fracturing hard roofs by ground hydraulic action is an important control technology for the strong mine pressure in the stope. In this paper, a new simulation method, ?separate + interface,? is proposed, and two physical simulation experiments are conducted; the phenomenon of increased goaf pressure and decreased front abutment pressure is discovered after fracturing in the key strata, and then the influence of different fractured crack shapes on the front abutment pressure and the goaf stress is revealed. The results are as follows: Firstly, the separation under the high-level hard strata blocks the transmission of overburden load to the goaf, leading to the high-stress concentration of the coal seam, which is the main reason for the large deformation of roadways and the breakage of a single hydraulic prop in the roadway. Secondly, the weakening effect of mine pressure differs when hard rock strata are fractured artificially with different types of cracks. The peak value of abutment pressure is reduced from 24.91 to 20.60 MPa, 17.80 MPa, and 16.13 MPa with the vertical crack spacing of 20 m, 15 m, and 10 m, respectively, and the related goaf pressure is increased from 2.61 to 3.54 MPa, 3.91 MPa, and 4.34 MPa, respectively. The peak value of abutment pressure decreased from 24.79 to 22.08 MPa, 19.88 MPa, and 17.73 MPa. The related goaf pressure increased from 2.61 to 3.39 MPa, 3.81 MPa, and 4.43 MPa, respectively, with the key strata also fractured into two horizontal layers, three horizontal layers, and four horizontal layers with horizontal fractures. Thirdly, after the hard roof is fractured above the No. 8202 working face, the first breaking step distance of the main roof decreased from 112.6 to 90.32 cm, while the first breaking step distances of KS2 and KS3 decreased from 106.3 and 135.8 cm to 93.5 cm and 104.8 cm, respectively, and the goaf pressure also increased. Compared to the adjacent unfractured No. 8203 working face, the mine pressure intensity of the No. 8202 working face is significantly reduced. The research results can provide useful guidance for the treatment of strong mine pressure.

 Artículos similares

       
 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más