Resumen
Hollow core microstructures powered by infrared lasers represent a new and promising area of accelerator research, where advanced concepts of electromagnetism must be used to satisfy multiple requirements. Here, we present the design of a dielectric electromagnetic band gap (EBG) mode launcher?converter for high-power coupling in dielectric laser accelerators (DLAs). The device is based on a silicon woodpile structure, and it is composed of two perpendicularly coupled hollow-core waveguides?a transverse electric (TE)-like mode waveguide (excited from laser power) and a transverse magnetic (TM)-like mode (accelerating) waveguide?in analogy with the TE10" role="presentation">1010
10
-to-TM01" role="presentation">0101
01
waveguide mode converters of radio frequency (RF) linear accelerators (LINACs). The structure is numerically designed and optimized, showing insertion losses (IL) <0.5" role="presentation"><0.5<0.5
<
0.5
dB and efficient mode conversion in the operating bandwidth. The operating wavelength is 5 μ" role="presentation">µµ
µ
m, corresponding to a frequency of ?60 THz, in a spectral region where solid-state continuous-wave (CW) lasers exist and are actively developed. The presented woodpile coupler shows an interaction impedance in the order of 10 kΩ" role="presentation">OO
O
, high power handling and efficiency.