Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 16 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Monthly Streamflow Prediction of the Source Region of the Yellow River Based on Long Short-Term Memory Considering Different Lagged Months

Haibo Chu    
Zhuoqi Wang and Chong Nie    

Resumen

Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and Long Short-Term Memory (LSTM). The input selection methods, including autocorrelation function (ACF), partial autocorrelation function (PACF), and time lag cross-correlation (TLCC), were used to analyze the lagged time between variables. Then, the performance of the LSTM model was compared with three other traditional methods. The framework was used to predict monthly streamflow at the Jimai, Maqu, and Tangnaihai stations in the source area of the Yellow River. The results indicated that grid search and cross-validation can improve the efficiency of determining model parameters. The models incorporating ACF, PACF, and TLCC with lagged time are evidently superior to the models using the current variable as the model inputs. Furthermore, the LSTM model, which considers the lagged time, demonstrated better performance in predicting monthly streamflow. The coefficient of determination (R2) improved by an average of 17.46%, 33.94%, and 15.29% for each station, respectively. The integrated framework shows promise in enhancing the accuracy of monthly streamflow prediction, thereby aiding in strategic decision-making for water resources management.

 Artículos similares

       
 
Pouya Hosseinzadeh, Ayman Nassar, Soukaina Filali Boubrahimi and Shah Muhammad Hamdi    
Streamflow prediction plays a vital role in water resources planning in order to understand the dramatic change of climatic and hydrologic variables over different time scales. In this study, we used machine learning (ML)-based prediction models, includi... ver más
Revista: Hydrology

 
Ravindu Panditharathne, Miyuru B. Gunathilake, Imiya M. Chathuranika, Upaka Rathnayake, Mukand S. Babel and Manoj K. Jha    
Rainfall is one of the dominating climatic parameters that affect water availability. Trend analysis is of paramount significance to understand the behavior of hydrological and climatic variables over a long timescale. The main aim of the present study w... ver más
Revista: Hydrology

 
Hanyong Lee, Min Suh Chae, Jong-Yoon Park, Kyoung Jae Lim and Youn Shik Park    
Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number a... ver más

 
Baydaa Abdul Kareem, Salah L. Zubaidi, Hussein Mohammed Ridha, Nadhir Al-Ansari and Nabeel Saleem Saad Al-Bdairi    
Accurate streamflow prediction is significant when developing water resource management and planning, forecasting floods, and mitigating flood damage. This research developed a novel methodology that involves data pre-processing and an artificial neural ... ver más
Revista: Hydrology

 
Thais Fujita, Marcos Vinicius Bueno de Morais, Vanessa Cristina Dos Santos, Anderson Paulo Rudke, Marilia Moreira de Eiras, Ana Carolina Freitas Xavier, Sameh Adib Abou Rafee, Eliane Barbosa Santos, Leila Droprinchinski Martins, Cintia Bertacchi Uvo, Rodrigo Augusto Ferreira de Souza, Edmilson Dias de Freitas and Jorge Alberto Martins    
Within a single region, it is possible to identify opposite changes in flow production. This proved to be the case for several basins in southeastern South America. It remains challenging to the causes this behavior and whether changes in streamflow will... ver más
Revista: Water