Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Role of Hydrogen in Metal Oxidation?Implication to Irradiation Enhanced Corrosion of Ni-Based Alloys and Stainless Steels in High Temperature Water

Zihao Wang and Tetsuo Shoji    

Resumen

Hydrogen plays various roles in metals or at metal?environment interfaces. Well known effects on metals are hydrogen embrittlement, hydrogen enhanced local plasticity, hydrogen enhanced strain-induced vacancy, hydrogen accelerated oxidation, hydrogen-induced creep, and their synergy. In this study, the potential roles of hydrogen in materials degradation are demonstrated and studied by two different tests. One is the high temperature oxidation of Ni-based alloy in various environments with hydrogen penetration, and the other is the effects of neutron flux/fluence on the oxidation kinetics and SCC of 316L and 316LN stainless steels, regarding a possible role of transmuted H from N. The results emphasize that the hydrogen either permeated into metals from surrounding environments, such as high temperature water or gaseous hydrogen, or generated in metals by nuclei transmutation, such as hydrogen transmuted from N atoms in metals, which can promote metal oxidation through multiple mechanisms. Apparently, the oxidation/corrosion phenomenon is a synergy of sub-mechanisms. For instance, dissolved hydrogen (DH) is usually believed to slow down the corrosion process for lowering the open circuit potential (OCP). However, H also facilitates the transport of the cations in oxide, thereby accelerating the corrosion process. In this bi-mechanism system, two different, contradictory mechanisms work and exist simultaneously. Therefore, whether the metallic materials are benefited or degraded by the H during its oxidation process depends on which sub-mechanism is dominant. Namely, hydrogen can play the role an oxidant in the metal and metal/oxide interface to pre-oxidize metal elements, such as Cr, Ni, and Fe, and possibly promote inward oxygen diffusion and the oxidation rate at the interface. Moreover, hydrogen may play a role as a reductant in oxides where existing oxides can be reduced. Then, the protective capability of oxides will be decreased to result in corrosion acceleration at the metal?oxide interface. These phenomena were observed in Ni-based alloy and possibly austenitic stainless steel containing N such as 316LN SS. This work demonstrates a part of the role of hydrogen on oxidation, and more extensive and systematic work is needed to delineate the role of hydrogen on oxidation with and without irradiation.

 Artículos similares

       
 
Panjie Wiranegara, Sunardi Sunardi, Dadan Sumiarsa and Hafizan Juahir    
This research aimed to identify water quality changes in the Cirata Reservoir and the factors affecting them in terms of hydrology and climate. The sampling was carried out in both the rainy and dry seasons at 12 locations in the Cirata Reservoir. The Ma... ver más
Revista: Water

 
Fatemeh Mollaamin and Majid Monajjemi    
Carbon dioxide (CO2) adsorption on decorated graphene (GR) sheets with transition metals (TMs) including iron, nickel and zinc was investigated for removing this hazardous gas from the environment. TM-doped GR results in higher activity toward gas detect... ver más

 
Vicki J. Keast    
Even though it is a noble metal, silver will corrode in ambient atmospheres, predominantly by reacting with sulfur-containing gases such as hydrogen sulfide (H2S) and carbonyl sulfide (OCS) to form the silver sulfide (Ag2S) acanthite. Other aspects of th... ver más

 
Digby D. Macdonald and George R. Engelhardt    
The radiolysis of water is a significant cause of corrosion damage in the primary heat transport systems (PHTSs) of water-cooled, fission nuclear power reactors (BWRs, PWRs, and CANDUs) and is projected to be a significant factor in the evolution of corr... ver más

 
A K M Khabirul Islam, Patrick S. M. Dunlop, Neil J. Hewitt, Rose Lenihan and Caterina Brandoni    
Billions of litres of wastewater are produced daily from domestic and industrial areas, and whilst wastewater is often perceived as a problem, it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four a... ver más