Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Wind Wave Growth and Dissipation in a Narrow, Fetch-Limited Estuary: Long Island Sound

Amin Ilia    
Alejandro Cifuentes-Lorenzen    
Grant McCardell and James O?Donnell    

Resumen

The geometry of the Long Island Sound (LIS) renders the wave field fetch-limited and leads to marked differences between western and eastern areas. The mechanisms that contribute to the formation and dissipation of waves in the LIS are not well understood. We evaluated the ability of the wave module of a wave-coupled hydrodynamic model to simulate different wind?wave scenarios. We were unable to capture wave statistics correctly using existing meteorological model results for wind forcing due to the low resolution of the models and their inability to resolve the LIS coastline sufficiently. To solve this problem, we modified the wind fields using in situ wind observations from buoys. We optimized both the Komen and Jansen parameterizations for the LIS to better present the peak winds during storms. Waves in the LIS develop more quickly than simple theory predicts due to quadruplet nonlinear wave?wave interaction effects. Removing quadruplet nonlinear wave?wave interaction increases the time to full saturation by 50%. The spatial distribution of wave energy density input reveals the complex interaction between wind and waves in the LIS, with the area of greatest exposure receiving higher wave energy density. The interaction of nonlinear wave?wave interaction and whitecapping dissipation defines the shape of the directional spectrum along the LIS. Dissipation due to whitecapping and shoaling are the main parameters modulating a fully developed wave field.

 Artículos similares

       
 
Yan Dong, Jian Zhang, Shaofeng Zhong and Yordan Garbatov    
The study aims to develop a simplified strength assessment method for the preliminary structural design of a semi-submersible floating offshore wind turbine platform. The method includes load cases with extreme wave load effects and a load case dominated... ver más

 
Dong-Ju Kim, Young-Suk You and Min-Young Sun    
Offshore wind turbines (OWTs) are exposed to cyclic loads resulting from wind, waves, and rotor rotation. These loads can induce resonance, thereby significantly increasing the amplitude of the structure and accelerating the accumulation of fatigue damag... ver más

 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Zhipeng Zang, Zhuo Fang, Kuan Qiao, Limeng Zhao and Tongming Zhou    
A three-dimensional numerical model was established based on ANSYS-AQWA (R19.0) software for the purpose of analyzing the hydrodynamic characteristics of a floating breakwater. This study examines three distinct floating breakwaters with different cross-... ver más