Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Self-Sustainability Assessment for a High Building Based on Linear Programming and Computational Fluid Dynamics

Carlos Oliveira    
José Baptista and Adelaide Cerveira    

Resumen

With excess energy use from non-renewable sources, new energy generation solutions must be adopted to make up for this excess. In this sense, the integration of renewable energy sources in high-rise buildings reduces the need for energy from the national power grid to maximize the self-sustainability of common services. Moreover, self-consumption in low-voltage and medium-voltage networks strongly facilitates a reduction in external energy dependence. For consumers, the benefits of installing small wind turbines and energy storage systems include tax benefits and reduced electricity bills as well as a profitable system after the payback period. This paper focuses on assessing the wind potential in a high-rise building through computational fluid dynamics (CFD) simulations, quantifying the potential for wind energy production by small wind turbines (WT) at the installation site. Furthermore, a mathematical model is proposed to optimize wind energy production for a self-consumption system to minimize the total cost of energy purchased from the grid, maximizing the return on investment. The potential of a CFD-based project practice that has wide application in developing the most varied processes and equipment results in a huge reduction in the time and costs spent compared to conventional practices. Furthermore, the optimization model guarantees a significant decrease in the energy purchased at peak hours through the energy stored in energy storage systems (ESS). The results show that the efficiency of the proposed model leads to an investment amortization period of 7 years for a lifetime of 20 years.

 Artículos similares

       
 
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences

 
Süleyman Emre Eyimaya and Necmi Altin    
Microgrids usually employ distributed energy resources such as wind turbines, solar photovoltaic modules, etc. When multiple distributed generation resources with different features are used in microgrids, managing these resources becomes an important pr... ver más
Revista: Applied Sciences

 
Yahui Hu, Jiaqi Yan, Ertai Cao, Yimeng Yu, Haiming Tian and Heyuan Huang    
The statistical analysis of civil aircraft accidents reveals that the highest incidence of mishaps occurs during the approach and landing stages. Predominantly, these accidents are marked by abnormal energy states, leading to critical situations like sta... ver más
Revista: Aerospace

 
Wen Gao, Yanqiang Bi, Xiyuan Li, Apeng Dong, Jing Wang and Xiaoning Yang    
Hybrid airships, combining aerodynamic lift and buoyant lift, are efficient near-space aircraft for scientific exploration, observation, and surveillance. Compared to conventional airplanes and airships, hybrid airships offer unique advantages, including... ver más
Revista: Aerospace