Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 15 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Machine Learning Framework with Feature Importance Interpretation for Discharge Estimation: A Case Study in Huitanggou Sluice Hydrological Station, China

Sheng He    
Geng Niu    
Xuefeng Sang    
Xiaozhong Sun    
Junxian Yin and Heting Chen    

Resumen

Accurate and reliable discharge estimation plays an important role in water resource management as well as downstream applications such as ecosystem conservation and flood control. Recently, data-driven machine learning (ML) techniques showed seemingly insurmountable performance in runoff forecasting and other geophysical domains, but they still need to be improved in terms of reliability and interpretability. In this study, focusing on discharge estimation and management, we developed an ML-based framework and applied it to the Huitanggou sluice hydrological station in Anhui Province, China. The framework contains two ML algorithms, the ensemble learning random forest (ELRF) and the ensemble learning gradient boosting decision tree (ELGBDT). The SHapley Additive exPlanation (SHAP) was introduced into our framework to interpret the impact of the model features. In our framework, the correlation analysis of the dataset can provide feature information for modeling, and the quartile method was utilized to solve the outlier problem of the dataset. The Bayesian optimization algorithm was adopted to optimize the hyperparameters of the ensemble ML models. The ensemble ML models are further compared with the traditional stage?discharge rating curve (SDRC) method and the single ML model. The results show that the estimation performance of the ensemble ML models is superior to that of the SDRC and the single ML model. In addition, an analysis of the discharge estimation without considering the flow state was performed. This analysis reveals that the ensemble ML models have strong adaptability. The ensemble ML models accurately estimate the discharge, with a coefficient of determination of 0.963, a root mean squared error of 31.268, and a coefficient of correlation of 0.984. Our framework can prove helpful to improve the efficiency of short-term hydrological estimation and simultaneously provide the interpretation of the impact of the hydrological features on estimation results.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences