Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Deep Reinforcement Learning Approach to Traffic Signal Control with Connected Vehicles

Yang Shi    
Zhenbo Wang    
Tim J. LaClair    
Chieh (Ross) Wang    
Yunli Shao and Jinghui Yuan    

Resumen

The advent of connected vehicle (CV) technology offers new possibilities for a revolution in future transportation systems. With the availability of real-time traffic data from CVs, it is possible to more effectively optimize traffic signals to reduce congestion, increase fuel efficiency, and enhance road safety. The success of CV-based signal control depends on an accurate and computationally efficient model that accounts for the stochastic and nonlinear nature of the traffic flow. Without the necessity of prior knowledge of the traffic system?s model architecture, reinforcement learning (RL) is a promising tool to acquire the control policy through observing the transition of the traffic states. In this paper, we propose a novel data-driven traffic signal control method that leverages the latest in deep learning and reinforcement learning techniques. By incorporating a compressed representation of the traffic states, the proposed method overcomes the limitations of the existing methods in defining the action space to include more practical and flexible signal phases. The simulation results demonstrate the convergence and robust performance of the proposed method against several existing benchmark methods in terms of average vehicle speeds, queue length, wait time, and traffic density.

 Artículos similares

       
 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion... ver más
Revista: Applied Sciences

 
Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey    
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it ind... ver más
Revista: Applied Sciences

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Weiming Fan, Jiahui Yu and Zhaojie Ju    
Endoscopy, a pervasive instrument for the diagnosis and treatment of hollow anatomical structures, conventionally necessitates the arduous manual scrutiny of seasoned medical experts. Nevertheless, the recent strides in deep learning technologies proffer... ver más
Revista: Information

 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information