Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 15 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

Impact of Soil Surface Temperature on Changes in the Groundwater Level

Mukhamadkhan Khamidov    
Javlonbek Ishchanov    
Ahmad Hamidov    
Ermat Shermatov and Zafar Gafurov    

Resumen

The relationship between the soil surface temperature and groundwater level is complex and influenced by various factors. As the soil surface temperature increases, water evaporates quickly from the soil, which can lead to a decrease in the groundwater level. In this study, we analyzed the impact of soil surface temperature on changes in the groundwater level in the Bukhara region of Uzbekistan using data from 1991 to 2020. The Bukhara region experiences regular water shortages, increased soil salinization, and inefficient energy in lift-irrigated areas, which is a typical constellation of challenges to the water?energy?food?environment (WEFE) nexus. The soil surface temperature data were collected from the Hydrometeorological Service Agency, whereas groundwater level data were obtained from the database of the Amelioration Expedition under the Amu-Bukhara Basin Irrigation Systems Authority. We used linear regression analysis and Analysis of Variance (ANOVA) tests to establish the significance of the relationship between the soil surface temperature and groundwater level, as well as the impact of the location of the groundwater level measurements. The results indicate that the model was a good fit to the data, and both the intercept and the soil surface temperature were significant factors that affected groundwater level. The results further suggest that the strength of the relationship between solar radiation and soil surface temperature is very high, with a correlation coefficient of 0.840. This means that when solar radiation increases, soil surface temperature also tends to increase. The analysis also showed that 53.5% of the changes in groundwater level were observed by the regression model, indicating a moderately correlated relationship between the groundwater level and soil surface temperature. Finally, higher solar radiation leads to higher soil surface temperature and higher evapotranspiration rates, which can lead to a decrease in groundwater level. As a result, we observe that the soil surface temperature determines changes in the groundwater level in the study region.

 Artículos similares

       
 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Hyun-Ju Oh, Jung-Hoon Park and Hyung-Choon Park    
Pile foundations are used to support superstructures and play an important role in the safety of these structures. The performance of pile foundations generally depends on the conditions of the pile itself and the material under the pile tip(i.e., bottom... ver más
Revista: Buildings

 
Songyang Wang, Jianjun Ma, Chaosheng Wang, Fengjun Liu and Da Li    
The scouring effect is widely acknowledged as a primary contributor to the weakening in the bearing performance of offshore piles; it often results in asymmetric scour patterns around the pile. To meticulously examine the impact of three-dimensional asym... ver más
Revista: Applied Sciences

 
Jifei Cui, Yanhao Jin, Yingjie Jing and Yu Lu    
An elastoplastic analysis scheme for the cylindrical cavity expansion in offshore islands unsaturated soils considering anisotropy is established. The hydraulic properties and anisotropy caused by stress of unsaturated soils are coupled in an elastoplast... ver más

 
Kun Yuan, Rui Wang, Bo He, Guowei Fu, Yanwei Song, Lixin Pei, Shichao Fan and Fangyi Gao    
Lagoons, significant coastal wetlands, stand out for their vital role in the cycles and transformations of phosphorus. However, the relationship between the spatial distributions of various phosphorus forms in the soil and sediments of lagoon areas remai... ver más