Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Application of Deep Convolutional Neural Networks and Smartphone Sensors for Indoor Localization

Imran Ashraf    
Soojung Hur and Yongwan Park    

Resumen

Indoor localization systems are susceptible to higher errors and do not meet the current standards of indoor localization. Moreover, the performance of such approaches is limited by device dependence. The use of Wi-Fi makes the localization process vulnerable to dynamic factors and energy hungry. A multi-sensor fusion based indoor localization approach is proposed to overcome these issues. The proposed approach predicts pedestrians? current location with smartphone sensors data alone. The proposed approach aims at mitigating the impact of device dependency on the localization accuracy and lowering the localization error in the magnetic field based localization systems. We trained a deep learning based convolutional neural network to recognize the indoor scene which helps to lower the localization error. The recognized scene is used to identify a specific floor and narrow the search space. The database built of magnetic field patterns helps to lower the device dependence. A modified K nearest neighbor (mKNN) is presented to calculate the pedestrian?s current location. The data from pedestrian dead reckoning further refines this location and an extended Kalman filter is implemented to this end. The performance of the proposed approach is tested with experiments on Galaxy S8 and LG G6 smartphones. The experimental results demonstrate that the proposed approach can achieve an accuracy of 1.04 m at 50 percent, regardless of the smartphone used for localization. The proposed mKNN outperforms K nearest neighbor approach, and mean, variance, and maximum errors are lower than those of KNN. Moreover, the proposed approach does not use Wi-Fi for localization and is more energy efficient than those of Wi-Fi based approaches. Experiments reveal that localization without scene recognition leads to higher errors.

 Artículos similares

       
 
Xiaoyan Shi, Fuming Yang, Enzhu Hou and Zhongzhu Liang    
Metalenses, with their unique modulation of light, are in great demand for many potential applications. As a proof-of-principle demonstration, we focus on designing SiO2 metalenses that operate in the deep ultraviolet region, specifically around 193 nm. ... ver más
Revista: Applied Sciences

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Beichen Lu, Yanjun Liu, Xiaoyu Zhai, Li Zhang and Yun Chen    
In recent years, clean and renewable energy sources have received much attention to balance the contradiction between resource needs and environmental sustainability. Among them, ocean thermal energy conversion (OTEC), which consists of surface warm seaw... ver más

 
Alvin Lee, Suet-Peng Yong, Witold Pedrycz and Junzo Watada    
Drones play a pivotal role in various industries of Industry 4.0. For achieving the application of drones in a dynamic environment, finding a clear path for their autonomous flight requires more research. This paper addresses the problem of finding a nav... ver más
Revista: Algorithms

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation